首页> 外文会议>International Conference on Intelligent Robots and Systems >A back-end L_1 norm based solution for Factor Graph SLAM
【24h】

A back-end L_1 norm based solution for Factor Graph SLAM

机译:基于后端L_1规范的因子图SLAM解决方案

获取原文

摘要

Graphical models jointly with non linear optimization have become the most popular approaches for solving SLAM and Bundle Adjustment problems: using a non linear least squares (NLSQs) description of the problem, these math tools serve to formalize the minimization of an error cost function that relates state variables through relative sensor observations. The simplest case just considers as state variables the locations of the sensor/robot in the environment deriving in a pose graph subproblem. In general, the cost function is based on the L_2 norm whose principal iterative solutions exploit the sparse connectivity of the corresponding Gaussian Markov Field (GMRF) or the Factor Graph, whose adjacency matrices are given by the fill-in of the Hessian and Jacobian of the cost function respectively. In this paper we propose a novel solution based on the L_1 norm as a back-end to the pose graph subproblem. In contrast to other NLSQs approaches, we formulate an iterative algorithm inspired directly on the Factor Graph structure to solve for the linearized residual || Ax — b||_1. Under the presence of spurious measurements the L_1 based solution can achieve similar results to the robust Huber norm. Indeed, our main interest in L_1 optimization is that it opens the door to the set of more robust non-convex L_p norms where p < 1. Since our approach depends on the minimization of a non differentiable function, we provide the theoretical insights to solve for the L_1 norm. Our optimization is based on a primal-dual formulation successfully applied for solving variational convex problems in computer vision. We show the effectiveness of the L_1 norm to produce both a robust initial seed and a final optimized solution on challenging and well known datasets widely used in other state of the art works.
机译:与非线性优化共同的图形模型已成为解决SLAM和捆绑调整问题的最流行的方法:使用非线性最小二乘(NLSQS)描述问题,这些数学工具用于正式化误差成本函数的最小化状态变量通过相对传感器观察。最简单的情况只是认为状态变量在姿势图形子发布中导出的环境中传感器/机器人的位置。通常,成本函数基于L_2规范,其主要迭代解决方案利用相应的高斯马尔可夫字段(GMRF)或因子图的稀疏连接,其邻接矩阵由Hessian和Jacobian的填充给出分别是成本函数。在本文中,我们提出了一种基于L_1标准的新型解决方案,作为姿势图亚数的后端。与其他NLSQS方法相比,我们制定了直接启发的迭代算法,直接启发在因子图结构中,以解决线性化残差|| AX - B || _1。在虚假测量的存在下,基于L_1的解决方案可以实现与稳健的Huber标准相似的结果。实际上,我们对L_1优化的主要兴趣是它将门打开了一个更强大的非凸值L_P规范的大门,其中P <1。由于我们的方法取决于最小化不可分辨函数,我们提供了解决的理论见解对于L_1标准。我们的优化基于原始的双重配方,以解决计算机视觉中的变分凸起问题。我们展示了L_1规范的有效性,以产生稳健的初始种子和最终优化的解决方案上的具有挑战性和众所周知的数据集,广泛应用于本领域的其他状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号