首页> 外文会议>Conference on Nanophotonics, Nanostructure, and Nanometrology >Mechanisms of plasmon induced charge separation and recombination at gold nanoparticle supported on different size TiO_2 film systems
【24h】

Mechanisms of plasmon induced charge separation and recombination at gold nanoparticle supported on different size TiO_2 film systems

机译:在不同尺寸TiO_2薄膜系统上负载金纳米粒子的等离子体诱导电荷分离和重组的机制

获取原文

摘要

Study of plasmon-induced charge transfer mechanism in gold-TiO_2 system is crucial and promising in the solar cell application. To investigate charge separation and recombination dynamics in gold/TiO2 nanoparticle systems, we used ultrafast visible-pump/IR-probe femtosecond transient absorption spectroscopy method. In our experimental study, anatase TiO_2 with different particle size 9 nm and 20 nm were chosen as electron acceptors. Plasmon-induced electron transfer from the gold nanoparticle to the conduction band of TiO_2 was studied by optical excitation of the surface plasmon band of gold nanoparticle at 550 nm. The transient absorption kinetics were studied by probing at 3440 nm to observe intraband free electron adsorption in TiO_2. In our experimental results, electron injection was found to be completed within the apparatus time resolution (240 fs), the charge recombination decay within 1.5 ns was nonexponential. And when laser power changed from 0.5 μJ to 1.9 μJ, the recombination decay didn't depend on the excitation intensity. It is interesting that we found the measured back electron transfer kinetics up to 1.5 ns were strongly dependent on the particle size of TiO_2. The plasmon-induced charge transfer mechanisms will be discussed.
机译:金 - TiO_2系统中的等离子电荷转移机制研究在太阳能电池应用中至关重要和承诺。为了研究金/ TiO2纳米粒子系统中的电荷分离和重组动力学,我们使用超快可见泵/ IR探针飞秒瞬态吸收光谱法。在我们的实验研究中,选择具有不同粒径9nm和20nm的锐钛矿TiO_2作为电子受体。通过在550nm处的金纳米粒子的表面等离子体带的光学激发研究了从金纳米颗粒到TiO_2的导带的等离子体诱导的电子转移。通过在3440nm探测在TiO_2中观察Intraband自由电子吸附来研究瞬时吸收动力学。在我们的实验结果中,发现电子注射在装置时间分辨率(240fs)内完成,1.5 ns内的电荷重组衰减是非倾向的。当激光功率从0.5μJ变为1.9μJ时,重组衰减并不依赖于激发强度。有趣的是,我们发现高达1.5ns的测量的背电子转移动力学强烈依赖于TiO_2的粒度。将讨论等离子体诱导的电荷转移机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号