首页> 外文会议>Conference on MEMS/MOEMS Components and Their Applications V. Special Focus Topics: Transducers at the Micro-Nano Interface >A Mechanistic Model for Adsorption-induced Change in Resonance Response of Submicron Cantilevers
【24h】

A Mechanistic Model for Adsorption-induced Change in Resonance Response of Submicron Cantilevers

机译:吸附诱导亚微米悬臂响应变化的机制模型

获取原文
获取外文期刊封面目录资料

摘要

Submicron cantilever structures have been demonstrated to be extremely versatile sensors and have potential applications in physics, chemistry and biology. The basic principle in submicron cantilever sensors is the measurement of the resonance frequency shift due to the added mass of the molecules bound to the cantilever surface. This paper presents a theoretical model to predict the resonance frequency shift due to molecular adsorption on submicron cantilevers. The influence of the mechanical properties of the adsorbed molecules bound to the upper and lower surface on the resonance frequency has been studied. For various materials, the ratio between the thicknesses of the adsorbed layer and the cantilever where either stiffness or added mass is dominant will be determined. The critical ratio (which contribution of effect cancel each others) between the thickness of the adsorbed layer and the cantilever and ratio between stiffness and density of adsorbed layer and cantilever have been determined. The calculations show the added mass and stiffness how contribute to the resonant behavior. This model gives insight into the decoupling of both opposite effects and is expected to be useful for the optimal design of resonators with high sensitivity to molecular adsorption based on either stiffness or mass effects.
机译:已经证明亚微米悬臂结构是极其通用的传感器,并且具有物理,化学和生物学的潜在应用。亚微米悬臂传感器的基本原理是由于与悬臂表面结合的分子的额外质量而导致的共振频率偏移的测量。本文提出了一种理论模型,以预测亚微米悬臂上的分子吸附引起的共振频率。研究了与上表面和下表面结合在谐振频率上的吸附分子的力学性能的影响。对于各种材料,将测定吸附层的厚度与刚度或添加质量的悬臂之间的比率。已经确定了吸附层厚度与吸附层和悬臂的悬臂和密度之间的悬臂和密度之间的悬臂和悬臂之间的贡献彼此取消的贡献。计算显示了额外的质量和刚度如何有助于共振行为。该模型深入了解两种相反效应的​​去耦,并且预计可用于基于刚度或质量效应的分子吸附具有高敏感性的谐振器的最佳设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号