首页> 外文会议>Conference on Global Oceans : Singapore – U.S. Gulf Coast >Planar Synthetic Aperture Sonar Generalized to Irregular Sampling Grids
【24h】

Planar Synthetic Aperture Sonar Generalized to Irregular Sampling Grids

机译:平面合成孔径声纳通用于不规则的采样网格

获取原文

摘要

Since its introduction in sonar (1975), the major application of synthetic aperture is in side-scan geometry (bottom imaging and mine detection) where azimuthal compression can only be achieved along the sonar trajectory (1D). More recently (2000), other scanning geometries (2D) have been proposed (circular or planar), in order to take advantage of SAS processing in two directions, in particular for object identification or buried objects detection. In previous works, we have shown the possible extension of SAS techniques to planar scanning (longitude, latitude and depth). P-SAS was applied to sub-bottom profiler geometry. The concept was first validated on simulation and tank data and then on sea data obtained in a dump site in the Baltic sea (SITAR project). Extending SAS to a planar geometry is faced to the errors on a trajectory both within a track and between the tracks. Due to the additional degree of freedom, conventional auto-focusing techniques and even trajectory correction techniques are quite difficult to implement because of the 3D structure of both raw and processed data. In previous works, for processing sea data, we have proposed to use oversampled $(imes 4)$ regular planar grids and to precompute focusing laws for such grids ahead of processing, and later on, to apply them to real data “re-positioned” on those grids. This, so-called Projective PSAS (PPSAS), consists thus in a rearranging of raw data followed by “conventional PSAS“ processing on a regular oversampled grid (with positioning error $< lambda/8$). Repositioning is achieved thanks to the use of a long baseline for positioning the sonar system. In this paper, we propose to use the same navigation data and compute, for every case, the actual focusing delays required for planar synthesis in a generalized geometry, Generalized PSAS(GPSAS). Both methods (PPSAS and GPSAS) will be compared on simulation and tank experimental data (where all parameters and geometries are fully controlled). The complexity of both processing approaches is presented. • PPSAS ○ Pros: the focusing delays are pre-computed once for all and data is rearranged to fit on existing grid; PSAS can be split into SAS along one axis followed by SAS along the other axis (can be achieved partly in real-time along one direction). ○ Cons: spatial oversampling is required; part of the data whose position is too far from the ideal position is not used. • GPSAS: ○ Pros: oversampling is not required; all data can be used. ○ Cons: focusing delays must be computed for each geometry taking into account the actual trajectories in 3D; PSAS processing cannot be simplified and must all be achieved after the end of acquisition. First the complexity of both solutions will be investigated in details and computation times will be compared on the same data sets. Then the output performances will be compared, in terms of main lobe resolution and side lobes level. Several simulations using different configurations (single scatterer, multiple scatterers) and different mismatches (between ideal and actual geometries) will be presented. Simulations show that PPSAS can be used for a rapid, “lower quality” imaging (partly in real-time along track) then “suspicious areas” can be processed in details with GPSAS for higher resolution lower side-lobe (but slower) reconstruction of buried objects.
机译:自介绍Sonar(1975)以来,合成孔径的主要应用是侧扫几何(底部成像和矿井检测),其中距离声纳轨迹(1D)只能实现方位角压缩。最近(2000),已经提出了其他扫描几何形状(2D)(圆形或平面),以便在两个方向上利用SAS处理,特别是用于对象识别或掩埋物体检测。在以前的作品中,我们已经显示了SAS技术的可能扩展到平面扫描(经度,纬度和深度)。 P-SAS应用于子底分析器几何形状。该概念是在仿真和坦克数据上验证,然后在波罗的海(Sitar项目)中获得的海运数据上。将SAS扩展到平面几何形状面对轨迹内的轨迹的错误,也可以在轨道和轨道之间进行轨迹。由于额外的自由度,由于原始和处理数据的3D结构,传统的自动聚焦技术和甚至轨迹校正技术很难实现。在以前的作品中,为了处理海数据,我们提出使用过采购 $( times 4)$ 常规平面网格和预先编译此网格的重点定律,并以后将它们应用于这些网格上的真实数据“重新定位”。因此,即所谓的投影PSA(PPSA),因此在重新排列的原始数据中,后跟常规过采样网格上的“传统PSA”处理(具有定位误差 $ < lambda / 8 $ )。由于使用长基线来定位声纳系统来实现重新定位。在本文中,我们建议为每种情况使用相同的导航数据和计算平面在广义几何形状,广义PSA(GPSA)中的平面合成所需的实际聚焦延迟。将在仿真和坦克实验数据上进行比较两种方法(PPSA和GPSA)(其中所有参数和几何形状都被完全控制)。呈现了两种处理方法的复杂性。 •PPSAS○优点:对聚焦延迟进行预先计算一次,并重新排列数据以适应现有网格; PSA可以沿着一个轴分成SA,然后沿着另一个轴沿着SAS(可以部分地沿一个方向实时实现)。 ○缺点:需要空间过采样;不使用距离理想位置太远的数据的一部分。 •GPSAS:○优点:不需要过采样;可以使用所有数据。 ○缺点:必须考虑到3D实际轨迹的每个几何体计算聚焦延迟; PSAS处理无法简化,并且必须在收购结束后实现。首先,将在详细的情况下调查两种解决方案的复杂性,并将在相同的数据集中进行比较计算时间。然后,就主瓣分辨率和侧瓣级别而言,将进行输出性能。将呈现使用不同配置(单散射器,多个散射仪)和不同不匹配(理想和实际几何形状)的多个模拟。模拟表明,PPSA可以用于快速,“较低质量”成像(部分实时沿轨道)然后“可疑区域”可以详细地处理GPSA,以获得更高分辨率的下侧凸(但较慢)的重建埋葬的物体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号