首页> 外文会议>Propulsion and Energy Forum >Numerical Analyses of Thermal Protection Design in Hybrid Rocket Motors
【24h】

Numerical Analyses of Thermal Protection Design in Hybrid Rocket Motors

机译:混合火箭电动机热保护设计的数值分析

获取原文

摘要

Hybrid rockets can provide a similar degree of flexibility in the thrust profile as a liquid engine but keeping a much simpler architecture. In addition to deal with only a single liquid propellant, hybrids are often designed with some sort of ablative protection system borrowed from the less flexible solid rockets instead of the more complex regenerative-type typically found in liquid rockets. Even if it is not a strict rule as regenerative hybrids or ablative liquids exist, this is the most common approach. In order to properly design the hybrid combustion chamber, it is important to determine the behavior of the thermal protection system during the burn and after the burn, particularly when the multiple fire capability of hybrids has to be exploited. In this paper, the thermal response of thermal protections is investigated trough numerical modelling. A one-dimensional code has been developed that solves the transient heat equation with or without regression of the surface. The code considers the heat transfer normal to the surface from the combustion trough the thermal protection up to the external surface of the hybrid casing, where the radiative heat transfer toward space is applied. The results highlight the importance of the heat soak back after burn, which force the use of thicker thermal protections, higher temperature resistant materials and more careful design if the hybrid is fired multiple times or when the motor case is foreseen to be reusable. However, it is also shown that, when possible, properly using the thrust termination and re-ignition capability of hybrids can help limiting the amount of thermal protections to a level even lower than that of the single burn expendable case. Nevertheless, on the opposite side, other critical situations like an upper stage performing an Hohmann transfer are also highlighted. The methodology and the analyses performed in this paper can also be applied/extended to non-regenerative cooled liquid engines.
机译:混合火箭可以在推力轮廓中提供类似程度的柔韧性,作为液体发动机,但保持更简单的架构。除了仅处理单个液体推进剂之外,杂交种通常是用来自较低柔性固体火箭借入的某种烧蚀保护系统而不是液体火箭中的更复杂的再生型。即使没有严格的规则,作为再生杂种或烧蚀液体,这是最常见的方法。为了正确设计混合燃烧室,重要的是在燃烧期间确定热保护系统的行为,特别是当必须利用杂种的多次火力。本文研究了热保护的热响应是研究了槽数造型。已经开发了一维码,其解决有或没有表面回归的瞬态热方程。该代码考虑了从燃烧槽到表面的热传递到燃烧到混合壳体的外表面的热量,其中施加辐射传热朝向空间。结果突出了燃烧后热量浸热的重要性,这迫使使用较厚的热保护,更高的耐温材料,更仔细的设计如果混合动力是多次射击或者当预见到可重复使用的电机外壳时,则更加仔细设计。然而,还表明,当可能的情况下,使用杂种的推力终止和再点火能力适当地,可以帮助将热保护量限制在甚至低于单烧消耗外壳的水平。然而,在另一侧,还突出显示了执行Hohmann转移的上阶段的其他临界情况。本文执行的方法和分析也可以应用/延伸到非再生冷却的液体发动机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号