首页> 外文会议>SPE Canada Unconventional Resources Conference >Impact of Entrained Hydrocarbon and Organic Matter Components on Reservoir Quality of Organic-Rich Shales: Implications for Sweet Spot Identification in the Duvernay Formation Canada
【24h】

Impact of Entrained Hydrocarbon and Organic Matter Components on Reservoir Quality of Organic-Rich Shales: Implications for Sweet Spot Identification in the Duvernay Formation Canada

机译:夹带的烃类和有机物质成分对有机富子系储层质量的影响:杜弗债术中甜点鉴定的影响加拿大

获取原文

摘要

Hydrocarbon storage capacity of organic-rich shales depends upon porosity and surface area, whereas pore (throat) size distribution and pore (throat) network connectivity control permeability. The pores within organic matter (OM) of organic-rich shales develop during thermal maturation as different hydrocarbon phases are generated and expelled from the OM. Organic-rich shales can potentially retain a large proportion of the hydrocarbons generated during the diagenesis process. Commercial hydrocarbon production from liquid-rich shale reservoirs can be achieved using completion technologies such as multi-stage-fractured horizontal wells (MFHWs). However, the ability of industry to identify "sweet spots" along MFHWs is still hampered by insufficient understanding of the effect of type/content of entrained hydrocarbon/OM components on reservoir quality. The primary objective of the current study is therefore to investigate the impact of entrained hydrocarbon/OM on storage and transport properties of the organic-rich shales. To accomplish this goal, a comprehensive suite of petrophysical analyses are performed on a diverse sample suite from the Duvernay Formation (a prolific Canadian shale oil reservoir) differing in organic matter content (2.8-5 wt.%; n = 5), before and after sequential pyrolysis by a revised Rock-Eval analysis (extended slow heating (ESH) Rock-Eval analysis; Sanei et al., 2015). Using the ESH cycle, different hydrocarbon/OM components can be distinguished more easily and reliability during the pyrolysis process: 1) free light oil (S1ESH; up to 150 °C), 2) fluid-like hydrocarbon residue (S2a; 150-380 °C) and 3) solid bitumen/residual carbon (S2b; 380-650 °C). The characterization techniques at each stage are helium pycnometry (grain density, helium porosity); low-pressure gas (N2, CO2) adsorption (pore volume, surface area, pore size distribution within micropores, mesopores and smaller macropores); crushed-rock gas (He, CO2, N2) permeability and rate-of-adsorption (ROA) analysis (CO2, N2). Scanning electron microscopy (SEM) analysis is further conducted to verify/support the petrophysical observations. Compared to the "as-received" state, porosity, permeability, modal pore size distribution and surface area increase with sequential pyrolysis stages, associated with expulsion and devolatilization of free light oil and fluid-like hydrocarbon residue (S2a; up to 380 °C). However, the change in petrophysical properties associated with the degradation of solid bitumen/residual carbon (S2b; up to 650 °C) is variable and unpredictable. The observed reduction in porosity/permeability values after the S2b stage are likely attributed to 1) occlusion of pore volume with solid bitumen/residual carbon degradation (i.e. coking) and/ or 2) sample swelling due to water loss from lattice structure of clay minerals (i.e. illite) and 3) sample compaction as a result of OM removal from the rock matrix. The present study is a continuation of previous works (Clarke et al., 2016, 2017), aiming to elucidate the impact of different type and content of entrained hydrocarbons/OM on reservoir quality of organic- rich shales. Quantification of the evolution of reservoir quality with thermal maturity has important implications for 1) identifying petrophysical "sweet spots" within unconventional reservoirs, for the purpose of optimizing stimulation design and 2) targeting specific zones within the reservoir of interest with organic matter content/type amenable to maximizing gas storage/transport during cyclic solvent injection for enhanced oil recovery applications. The integrated workflow proposed herein is of significant interest to Duvernay operators for developing optimized stimulation treatments for improving primary and enhanced hydrocarbon recovery.
机译:的富有机质页岩烃存储容量取决于孔隙率和表面积,而孔(喉)大小分布和孔(喉)的网络连接控制渗透性。热成熟过程中作为不同的烃相生成并从排出OM内有机物的富含有机物的页岩(OM)开发的孔中。有机富含的Haales可以潜在地保留在成岩作用过程中产生的大部分碳氢化合物。从富液页岩储层商业烃生产可使用完成的技术,如多级裂隙水平井(MFHWs)来实现。然而,行业以鉴定“甜蜜点”沿MFHWs的能力仍受到的夹带烃/ OM组分对储层质量类型/量的影响认识不足而受到阻碍。因此,目前研究的主要目的是探讨含烃类烃/ OM对有机富含Halales储存和运输性质的影响。为了实现这个目标,岩石物理分析的一套综合被从迪韦奈形成一个多样的样品套件(多产的加拿大页岩油储存)在有机质含量不同(2.8-5重量%; N = 5)进行的,前和被修订生油岩评价仪分析连续热解后(扩展缓慢加热(ESH)生油岩评价仪分析;三荣等人,2015)。使用ESH周期,不同的烃/ OM部件可以更容易地和可靠性在热解过程为特征:1)游离轻油(S1ESH;高达150℃),2)的流体状烃残基(S2A; 150-380 ℃)和3)固体沥青/残留碳(S2b中; 380-650℃)。在每个阶段的表征技术是氦测比重法(颗粒密度,孔隙率氦);低压气体(N 2,CO 2)的吸附(孔体积,表面积,微孔,中孔和大孔较小内孔径分布);碎石气体(赫,CO2,N2)渗透性和速率的吸附(ROA)分析(CO2,N2)。扫描电子显微镜(SEM)分析,还进行验证/支持岩石物理观测。相比具有顺序热解阶段“所得到的”状态时,孔隙度,渗透性,模态孔径分布和表面积增加,驱逐和游离轻石油和流体状的烃残基(S2A脱挥发相关联;高达380℃ )。然而,在岩石物理性质的变化与固体沥青/残留碳的降解相关联(S2b中;高达650℃)是可变的和不可预知的。在孔隙率/渗透率值的观察到的还原后的S2b中阶段很可能归因于1)与固体沥青/残留碳降解(即焦化)和/或2的孔体积)的样品的闭塞肿胀由于来自粘土矿物的晶格结构失水(即伊利石)和3)样品压实作为来自岩石基质OM除去的结果。本研究是以前的工作的延续(Clarke等人,2016年,2017年),旨在阐明不同类型的夹带的烃的影响和内容/ OM上富含有机物页岩的储层质量。储层质量与热成熟的演进的量化有重要的影响1)鉴定非常规储层内的岩石物理“甜蜜点”,用于优化刺激设计和2)与有机质含量/类型感兴趣的贮存器内针对特定区域的目的适合于循环溶剂注入用于强化油采收过程中应用最大化气体储存/运输。本文提出的综合工作流程对于Duvernay运营商的显着感兴趣,用于开发优化的刺激处理,以改善初级和增强的烃恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号