首页> 外文会议>ASME Turbomachinery Technical Conference and Exposition >THE INNER WORKINGS OF AXIAL CASING GROOVES IN A ONE AND A HALF STAGE AXIAL COMPRESSOR WITH A LARGE ROTOR TIP GAP: CHANGES IN STALL MARGIN AND EFFICIENCY
【24h】

THE INNER WORKINGS OF AXIAL CASING GROOVES IN A ONE AND A HALF STAGE AXIAL COMPRESSOR WITH A LARGE ROTOR TIP GAP: CHANGES IN STALL MARGIN AND EFFICIENCY

机译:一个半级轴向压缩机中的轴向套管槽的内部工作,具有大转子尖端间隙:失速裕度和效率的变化

获取原文

摘要

Effects of axial casing grooves (ACGs) on the stall margin and efficiency of a one and a half stage low-speed axial compressor with a large rotor tip gap are investigated in detail. The primary focus of the current paper is to identify the flow mechanisms behind the changes in stall margin and on the efficiency of the compressor stage with a large rotor tip gap. Semicircular axial grooves installed in the rotor's leading edge area are investigated. A large eddy simulation (LES) is applied to calculate the unsteady flow field in a compressor stage with ACGs. The calculated flow fields are first validated with previously reported flow visualizations and stereo PIV (SPIV) measurements. An in-depth examination of the calculated flow field indicates that the primary mechanism of the ACG is the prevention of full tip leakage vortex (TLV) formation when the rotor blade passes under the axial grooves periodically. The TLV is formed when the incoming main flow boundary layer collides with the tip clearance flow boundary layer coming from the opposite direction near the casing and rolls up around the rotor tip vortex. When the rotor passes directly under the axial groove, the tip clearance flow boundary layer on the casing moves into the ACGs and no roll-up of the incoming main flow boundary layer can occur. Consequently, the full TLV is not formed periodically as the rotor passes under the open casing of the axial grooves. Axial grooves prevent the formation of the full TLV. This periodic prevention of the full TLV generation is the main mechanism explaining how the ACGs extend the compressor stall margin by reducing the total blockage near the rotor tip area. Flows coming out from the front of the grooves affect the overall performance as it increases the flow incidence near the leading edge and the blade loading with the current ACGs. The primary flow mechanism of the ACGs is periodic prevention of the full TLV formation.
机译:轴向壳体槽(ACGS)对具有大转子尖端间隙的一个和半级低速轴向压缩机的失速距和效率的影响。目前纸张的主要焦点是识别失速距和具有大转子尖端间隙的压缩机级的变化背后的流动机制。研究了安装在转子的前缘区域中的半圆形轴向槽。应用了一个大涡模拟(LES)以计算带有ACG的压缩机级中的非定常流场。首先通过先前报告的流量可视化和立体声PIV(SPIV)测量来验证计算的流场。对计算的流场的深度检查表明,当转子叶片周期性地在轴向槽下方通过时,ACG的主要机制是防止全尖漏涡流(TLV)形成。当进入的主流界边界层与从壳体附近的相反方向的尖端间隙流边界层碰撞时形成TLV,并在转子尖端涡旋周围卷起。当转子直接在轴向槽下方通过时,壳体上的尖端间隙流边界层移动到ACG中,并且不会发生进入的主流边界层的卷起。因此,当转子在轴向槽的开口壳体下方通过时,完全TLV不周期性地形成。轴向槽防止形成完整的TLV。这种定期预防完整的TLV生成是解释ACGS如何通过减小转子尖端区域附近的总堵塞来延伸压缩机失速余量的主要机制。从凹槽的前部出来的流量会影响整体性能,因为它将流动入射与当前acgs的前缘和刀片装载增加。 ACGS的主要流动机制是完全预防全TLV形成的定期预防。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号