首页> 外文会议>ASME turbo expo: turbomachinery technical conference and exposition >THE INNER WORKINGS OF AXIAL CASING GROOVES IN A ONE AND A HALF STAGE AXIAL COMPRESSOR WITH A LARGE ROTOR TIP GAP: CHANGES IN STALL MARGIN AND EFFICIENCY
【24h】

THE INNER WORKINGS OF AXIAL CASING GROOVES IN A ONE AND A HALF STAGE AXIAL COMPRESSOR WITH A LARGE ROTOR TIP GAP: CHANGES IN STALL MARGIN AND EFFICIENCY

机译:一台半转子轴距大的半轴压气机的轴向套管凹槽的内部工作:失速和效率的变化

获取原文

摘要

Effects of axial casing grooves (ACGs) on the stall margin and efficiency of a one and a half stage low-speed axial compressor with a large rotor tip gap are investigated in detail. The primary focus of the current paper is to identify the flow mechanisms behind the changes in stall margin and on the efficiency of the compressor stage with a large rotor tip gap. Semicircular axial grooves installed in the rotor's leading edge area are investigated. A large eddy simulation (LES) is applied to calculate the unsteady flow field in a compressor stage with ACGs. The calculated flow fields are first validated with previously reported flow visualizations and stereo PIV (SPIV) measurements. An in-depth examination of the calculated flow field indicates that the primary mechanism of the ACG is the prevention of full tip leakage vortex (TLV) formation when the rotor blade passes under the axial grooves periodically. The TLV is formed when the incoming main flow boundary layer collides with the tip clearance flow boundary layer coming from the opposite direction near the casing and rolls up around the rotor tip vortex. When the rotor passes directly under the axial groove, the tip clearance flow boundary layer on the casing moves into the ACGs and no roll-up of the incoming main flow boundary layer can occur. Consequently, the full TLV is not formed periodically as the rotor passes under the open casing of the axial grooves. Axial grooves prevent the formation of the full TLV. This periodic prevention of the full TLV generation is the main mechanism explaining how the ACGs extend the compressor stall margin by reducing the total blockage near the rotor tip area. Flows coming out from the front of the grooves affect the overall performance as it increases the flow incidence near the leading edge and the blade loading with the current ACGs. The primary flow mechanism of the ACGs is periodic prevention of the full TLV formation. Lower efficiency and reduced pressure rise at higher flow rates for the current casing groove configuration are due to additional mixing between the main passage flow and the flow from the grooves. At higher flow rates, blockage generation due to this additional mixing is larger than any removal of the flow blockage by the grooves. Furthermore, stronger double-leakage tip clearance flow is generated with this additional mixing with the ACGs at a higher flow rate than that of the smooth wall.
机译:详细研究了轴向壳体凹槽(ACG)对具有大转子叶尖间隙的一台半低速轴流式压缩机的失速裕度和效率的影响。本文的主要重点是确定失速裕度变化背后的流动机理,以及转子间隙较​​大的压缩机级的效率。研究了安装在转子前缘区域中的半圆形轴向凹槽。应用大涡模拟(LES)来计算带有ACG的压缩机级中的非稳态流场。首先使用先前报告的流量可视化效果和立体声PIV(SPIV)测量来验证计算的流场。对计算出的流场的深入研究表明,ACG的主要机理是防止转子叶片周期性地经过轴向槽下方时完全形成尖端泄漏涡(TLV)。当进入的主流边界层与来自外壳附近相反方向的尖端间隙边界层碰撞并围绕转子尖端涡旋向上滚动时,将形成TLV。当转子直接通过轴向凹槽下方时,外壳上的叶梢间隙流边界层移入ACG中,并且不会发生传入的主流边界层的卷起。因此,当转子通过轴向凹槽的开放式外壳下方时,不会周期性地形成完整的TLV。轴向凹槽可防止形成完整的TLV。这种定期防止TLV完全产生的机制是解释ACG如何通过减少转子尖端附近区域的总堵塞来扩展压缩机失速裕度的主要机制。从凹槽前部流出的气流会影响整体性能,因为它会增加前缘附近的气流入射和当前ACG的叶片负载。 ACG的主要流动机制是定期防止TLV完全形成。对于当前的套管凹槽配置,较低的效率和较低的压力上升(在较高的流量下)是由于主通道流与来自凹槽的流之间的额外混合造成的。在较高的流速下,由于这种额外的混合而导致的堵塞产生大于通过凹槽消除的任何流动堵塞。此外,通过与ACG的这种额外混合以比光滑壁更高的流速产生了更强的双泄漏尖端间隙流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号