首页> 外文会议>International Detonation Symposium >Explosive Response to Pinch Arising from Low Speed Spigot Impact
【24h】

Explosive Response to Pinch Arising from Low Speed Spigot Impact

机译:低速龙头冲击产生的爆炸反应

获取原文

摘要

Safety is of principal importance during the handling, processing and storage of explosives. It has been shown in previous work that the low speed spigot impact of consolidated Plastic Bonded Explosive is a significant threat. However, the occurrence of ignition and growth to reaction in these non-shock impacts is difficult to predict. An initial mechanical impact introduces a large amount of damage into the material bed in the form of cracks and increased porosity; this damage leads to an increase in the surface area available for burning. This increase is difficult to measure during an experiment as the measurement relies on visual estimates, which renders predictions of the burn difficult. To seek a better understanding of this issue, an investigation has been made into the pinching of explosive moulding powder, over a range of known particle sizes and packing densities in an idealised heavily confined cylindrical explosive bed. An embedded spigot struck by a projectile penetrates the cylindrical bed and initiates a small volume of the explosive through pinch at the far end of the cylinder. The resulting burn front then travels through the explosive bed at a pressure-dependent velocity, eventually evolving into a Deflagration to Detonation (DDT) response. In this paper experimental results indicating the threshold spigot impact velocity for initiating the moulding powder in this configuration and comparisons of the explosive burn front velocity and growth to detonation are reported. Modelling of the reaction growth from ignition at the pinch point through laminar burning to detonation is undertaken using the High Explosive Reaction to Mechanical Stimulus (HERMES) model. The predicted burn front velocity is compared with the experimental results.
机译:在处理,处理和储存爆炸物期间安全性是主要重要性的。它已在以前的工作中显示,综合塑料粘合炸药的低速龙头影响是一项重大威胁。然而,在这些非冲击撞击中发生点火和生长的发生是难以预测的。初始机械冲击以裂缝和孔隙率的形式引入大量损坏。这种损坏导致可用于燃烧的表面积增加。在实验期间,随着测量依赖于视觉估计,这种增加难以测量,这使得燃烧的预测变得困难。为了寻求更好地了解这个问题,已经在一系列已知的颗粒尺寸和填充密度在理想化的重大限制圆柱爆炸床上进行了一种调查。由弹丸击中的嵌入式套管穿透圆柱形床,并通过夹在圆筒的远端夹持的小体积爆炸。然后,所得到的烧伤前沿在压力依赖性速度下行进通过爆炸床,最终发展成爆燃以爆炸(DDT)响应。在本文中,报告了表明在这种配置和爆炸性烧伤前速度和生长的爆炸性烧伤前速度和生长的爆炸性粉末中启动模塑粉末的阈值龙头冲击速度和对爆炸进行爆炸的比较的实验结果。利用对机械刺激(Hermes)模型的高爆炸反应,通过燃烧到爆炸燃烧点的夹点点火的反应生长的建模。将预测的烧伤前速度与实验结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号