首页> 外文会议>International Conference on Automation Science and Engineering >Towards Automating Precision Irrigation: Deep Learning to Infer Local Soil Moisture Conditions from Synthetic Aerial Agricultural Images
【24h】

Towards Automating Precision Irrigation: Deep Learning to Infer Local Soil Moisture Conditions from Synthetic Aerial Agricultural Images

机译:实现自动化精密灌溉:深度学习从合成空中农业图像推断出局部土壤湿度条件

获取原文

摘要

Recent advances in unmanned aerial vehicles suggest that collecting aerial agricultural images can be cost-efficient, which can subsequently support automated precision irrigation. To study the potential for machine learning to learn local soil moisture conditions directly from such images, we developed a very fast, linear discrete-time simulation of plant growth based on the Richards equation. We use the simulator to generate large datasets of synthetic aerial images of a vineyard with known moisture conditions and then compare seven methods for inferring moisture conditions from images, in which the "uncorrelated plant" methods look at individual plants and the "correlated field" methods look at the entire vineyard: 1) constant prediction baseline, 2) linear Support Vector Machines (SVM), 3) Random Forests Uncorrelated Plant (RFUP), 4) Random Forests Correlated Field (RFCF), 5) two-layer Neural Networks (NN), 6) Deep Convolutional Neural Networks Uncorrelated Plant (CNNUP), and 7) Deep Convolutional Neural Networks Correlated Field (CNNCF). Experiments on held-out test images show that a globally-connected CNN performs best with normalized mean absolute error of 3.4%. Sensitivity experiments suggest that learned global CNNs are robust to injected noise in both the simulator and generated images as well as in the size of the training sets. In simulation, we compare the agricultural standard of flood irrigation to a proportional precision irrigation controller using the output of the global CNN and find that the latter can reduce water consumption by up to 52% and is also robust to errors in irrigation level, location, and timing. The first-order plant simulator and datasets are available at https://github.com/BerkeleyAutomation/RAPID.
机译:无人驾驶飞行器的最新进展表明,收集空中农业图像可能是具有成本效益的,这可以随后支持自动精密灌溉。为了研究机器学习的潜力,直接从这些图像中学习当地土壤水分条件,我们开发了一种非常快速,基于理查兹方程的植物生长的线性离散时间模拟。我们使用模拟器生成具有已知水分条件的葡萄园的综合空中图像的大型数据集,然后比较七种方法,用于从图像中推断水分条件,其中“不相关的植物”方法看看个体植物和“相关领域”方法看看整个葡萄园:1)恒定预测基线,2)线性支持向量机(SVM),3)随机森林不相关植物(RFUP),4)随机森林相关领域(RFCF),5)双层神经网络( NN),6)深卷积神经网络不相关的植物(CNNUP)和7)深卷积神经网络相关领域(CNNCF)。保持测试图像的实验表明,全球连接的CNN最佳地具有3.4%的归一化平均绝对误差。敏感性实验表明,学习的全局CNN是在模拟器和生成图像中注入噪声的强大,以及训练集的大小。在仿真中,我们使用全球CNN的产出将洪水灌溉农业标准与比例精密灌溉控制器进行比较,并发现后者可以将耗水量降低52%,并且对灌溉水平的错误也是强大的,和时间。 https://github.com/berkeleyautomation/rapid提供一阶工厂模拟器和数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号