首页> 外文会议>SAE World Congress Experience >Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field
【24h】

Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field

机译:用规定响应场使用杂交蜂窝自动化逐渐塌陷薄壁管状结构的结构优化

获取原文

摘要

The design optimization of thin-walled tubular structures is of relevance in the automotive industry due to their low cost, ease of manufacturing and installation, and high-energy absorption efficiency. This study presents a methodology to design thin-walled tubular structures for crashworthiness applications. During an impact, thin-walled tubular structures may exhibit progressive collapse/buckling, global collapse/buckling, or mixed collapse/buckling. From a crashworthiness standpoint, the most desirable collapse mode is progressive collapse due to its high-energy absorption efficiency, stable deformation, and low peak crush force (PCF). In the automotive industry, thin-walled components have complex structural geometries. These complexities and the several loading conditions present in a crash reduce the possibility of progressive collapse. The Hybrid Cellular Automata (HCA) method has shown to be an efficient continuum-based approach in crashworthiness design. All the current implementations of the HCA method use a scalar set point to design structures with a uniform distribution of a field variable, e.g., stress, strain, internal energy density (IED), mutual potential energy. For example, using IED and mutual potential energy as the field variable result in high stiffness and progressive collapsing structures, respectively. This paper presents a modified version of the HCA method to design thin-walled structures that collapse progressively. In this methodology, the set point has two components, a prescribed response field, which promotes progressive collapse, and a variable offset value, which satisfies the mass constraint. The numerical examples show that this modified HCA method is capable of finding material distributions that exhibit progressive collapse, resulting in significant improvement in specific energy absorption (SEA) with relatively little change in the PCF.
机译:由于其低成本,易于制造和安装,以及高能量吸收效率,薄壁管状结构的设计优化在汽车行业中具有相关性。该研究提出了一种设计用于抗碰撞性应用的薄壁管状结构的方法。在撞击期间,薄壁管状结构可能表现出渐进式塌陷/屈曲,全局塌陷/屈曲或混合坍塌/弯曲。从Crashworthessity的角度来看,由于其高能量吸收效率,稳定的变形和低峰挤压力(PCF),最期望的崩塌模式是逐渐崩溃。在汽车行业中,薄壁部件具有复杂的结构几何形状。这些复杂性和崩溃中的几种负载条件可降低渐进崩溃的可能性。杂交蜂窝自动机(HCA)方法已显示在Crashworthess Design中是一种有效的基于连续的方法。 HCA方法的所有当前实现使用标量设定点与具有均匀分布的域变量,例如应力,应变,内部能量密度(IED),相互势能的设计结构。例如,使用IED和互幂能量作为现场变量,分别导致高刚度和渐进性塌陷结构。本文介绍了用于设计逐渐崩溃的薄壁结构的HCA方法的修改版本。在该方法中,设定点具有两个组件,该分量是促进逐渐崩溃的规定响应场,以及满足质量约束的可变偏移值。数值示例表明,该改进的HCA方法能够找到表现出逐渐崩溃的材料分布,从而显着改善特定能量吸收(海),PCF的变化相对较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号