首页> 外文学位 >Bone remodeling as a hybrid cellular automaton optimization process.
【24h】

Bone remodeling as a hybrid cellular automaton optimization process.

机译:骨重塑作为混合细胞自动机优化过程。

获取原文
获取原文并翻译 | 示例

摘要

Biological structures are continually adapting to changes in their physical environment. In bones, for example, it has been widely accepted that mineral tissue is resorbed in regions exposed to low mechanical stimulus, whereas new bone is deposited where the stimulus is high. This process of functional adaptation is thought to enable bone to perform its mechanical functions with a minimum of mass. Many theoretical models for bone remodeling use this concept as part of the strategy to simulate bone structural adaptation. These models imply the existence of an equilibrium state where the bone structure is adapted to the environment and no net remodeling is required. The first practical computational models were developed under the assumption of isotropy of the trabecular structure in the continuum level. Despite the similarities in density distribution with in-vivo bone, no convergent solution was possible to obtain. Recent models have been developed to consider the anisotropic nature of the trabecular bone in the continuum level making use of optimization principles; however, despite of some mechanical aspects reflected by these idealized microstructures, they just represent a mathematical abstraction of the trabecular architecture.; The objective of this investigation is to develop an algorithm that incorporates tissue-level mechanisms of bone functional adaptation compatible with both phenomenological and optimization approaches. This technique makes use of the cellular automaton paradigm and concepts of structural optimization. The algorithm also incorporates the finite element method to perform structural analysis over a design domain that represents the bone structure. This design domain is composed of a lattice of sensor cells or cellular automata. These cells activate local processes of formation and resorption with changes in their relative variable mass. Parameters of the proposed algorithm include mechanotransduction of the mechanical stimulus and intracellular communication. This algorithm has been applied to a variety of tissue-level models which exhibit self trabeculation for all parameters applied. The resulting trabecular structure is also incorporated into a continuum level model in which the anisotropic nature of the trabecular bone is determined by direct simulation and not by a mathematical approximation.
机译:生物结构不断适应其物理环境的变化。例如,在骨骼中,矿物质组织在受到低机械刺激的区域被吸收,而新骨骼沉积在刺激程度高的区域,这已被广泛接受。人们认为这种功能适应过程使骨骼能够以最小的质量执行其机械功能。许多用于骨骼重塑的理论模型都将此概念用作模拟骨骼结构适应性策略的一部分。这些模型暗示着平衡状态的存在,在该状态下骨骼结构适应了环境并且不需要净重塑。在连续性水平上的小梁结构各向同性的假设下开发了第一个实用的计算模型。尽管密度分布与体内骨骼相似,但无法获得收敛解。已经开发出最近的模型,以利用优化原理在连续水平上考虑小梁骨的各向异性。然而,尽管这些理想化的微结构反映了一些机械方面,但它们仅代表了小梁结构的数学抽象。这项研究的目的是开发一种算法,该算法结合了与现象学和优化方法兼容的骨骼功能适应的组织级机制。该技术利用了元胞自动机范例和结构优化的概念。该算法还结合了有限元方法,可以在代表骨骼结构的设计域上执行结构分析。该设计域由传感器细胞或细胞自动机的晶格组成。这些细胞通过改变其相对可变质量来激活局部的形成和吸收过程。该算法的参数包括机械刺激的机械转导和细胞内通讯。该算法已应用于各种组织级别的模型,这些模型对所有应用的参数均表现出自小梁。所得的小梁结构也被合并到连续水平模型中,在该模型中,小梁骨骼的各向异性本质是通过直接模拟而不是通过数学近似来确定的。

著录项

  • 作者

    Tovar, Andres.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Mechanical.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号