...
首页> 外文期刊>SAE International Journal of Passenger Cars - Mechanical Systems >Structural Optimization of Thin-Walled Tubular Structures for Progressive Buckling Using Compliant Mechanism Approach
【24h】

Structural Optimization of Thin-Walled Tubular Structures for Progressive Buckling Using Compliant Mechanism Approach

机译:基于柔顺机构的渐进屈曲薄壁管状结构的结构优化

获取原文
获取原文并翻译 | 示例
           

摘要

This investigation introduces a methodology to design dynamically crushed thin-walled tubular structures for crashworthiness applications. Due to their low cost, high-energy absorption efficiency, and capacity to withstand long strokes, thin-walled tubular structures are extensively used in the automotive industry. Tubular structures subjected to impact loading may undergo three modes of deformation: progressive crushing/buckling, dynamic plastic buckling, and global bending or Euler-type buckling. Of these, progressive buckling is the most desirable mode of collapse because it leads to a desirable deformation characteristic, low peak reaction force, and higher energy absorption efficiency. Progressive buckling is generally observed under pure axial loading; however, during an actual crash event, tubular structures are often subjected to oblique impact loads in which Euler-type buckling is the dominating mode of deformation. This undesired behavior severely reduces the energy absorption capability of the tubular structure. The design methodology presented in this paper relies on the ability of a compliant mechanism to transfer displacement and/or force from an input to desired output port locations. The suitable output port locations are utilized to enforce desired buckle zones, mitigating the natural Euler-type buckling effect. The problem addressed in this investigation is to find the thickness distribution of a thin-walled structure and the output port locations that maximizes the energy absorption while maintaining the peak reaction force at a prescribed limit. The underlying design for thickness distribution follows a uniform mutual potential energy density under a dynamic impact event. Nonlinear explicit finite element code LS-DYNA is used to simulate tubular structures under crash loading. Biologically inspired hybrid cellular automaton (HCA) method is used to drive the design process. Results are demonstrated on long straight and S-rail tubes subject to oblique loading, achieving progressive crushing in most cases.
机译:这项研究介绍了一种方法,该方法可为防撞应用设计动态破碎的薄壁管状结构。由于它们的低成本,高能量吸收效率以及承受长行程的能力,薄壁管状结构在汽车工业中被广泛使用。承受冲击载荷的管状结构可能会经历三种变形模式:渐进压碎/屈曲,动态塑性屈曲以及整体弯曲或欧拉型屈曲。其中,渐进屈曲是最理想的坍塌方式,因为它会导致理想的变形特性,较低的峰值反作用力和较高的能量吸收效率。通常在纯轴向载荷下观察到渐进屈曲。然而,在实际的碰撞事件中,管状结构经常承受倾斜冲击载荷,其中欧拉型屈曲是变形的主要方式。这种不希望的行为严重降低了管状结构的能量吸收能力。本文介绍的设计方法依赖于顺应性机制将位移和/或力从输入传递到所需输出端口位置的能力。适当的输出端口位置用于增强所需的弯曲区域,从而减轻自然的欧拉型弯曲效应。本研究中要解决的问题是找到薄壁结构的厚度分布和输出端口位置,以最大程度地吸收能量,同时将峰值反作用力保持在规定的极限。厚度分布的基本设计遵循在动态冲击事件下均匀的相互势能密度。非线性显式有限元代码LS-DYNA用于模拟碰撞载荷下的管状结构。受生物启发的混合细胞自动机(HCA)方法用于驱动设计过程。在承受倾斜载荷的长直管和S型导轨管上显示了结果,在大多数情况下可实现逐渐破碎。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号