首页> 外文会议>SAE World Congress Experience >Simulation Based Control Strategy Design of All Wheel Drive Electric Vehicle Regenerative Braking System
【24h】

Simulation Based Control Strategy Design of All Wheel Drive Electric Vehicle Regenerative Braking System

机译:基于仿真的所有车轮驱动电动汽车再生制动系统的控制策略设计

获取原文

摘要

Maximising the recovered regenerative braking energy during the deceleration can significantly reduce the Electric Vehicle (EV) energy consumption and increase the range. Compared with the Front Wheel Drive (FWD) or Rear Wheel Drive (RWD) EV, an All Wheel Drive (AWD) EV with 2 electric machines (e-machines) has more control degree freedom when developing the regenerative braking control strategy. By implementing the regenerative braking at the front axle, rear axle, or at the front and rear axles simultaneously, the amount of recovered kinetic energy will be affected. Furthermore, the e-machines at the front and rear axle in the AWD EV can have different sizes or be the same. Therefore, the ratio between front and rear e-machine power rating should also be investigated to understand its effect on the amount of recovered energy during deceleration. This paper starts with the analysis of the vehicle braking behaviour compared over different driving cycles, and the comparison of two configurations of regenerative braking system, Category A and B. Then, the AWD EV is modelled, and its regenerative braking controller is developed using Ricardo in-house, proprietary simulation tools. The power rating of front and rear axle e-machines in this model is varied. The regenerative braking controller simulates Category A or B regenerative braking system with various control strategies (such as front axle or rear axle only regenerative braking, and all wheel regenerative braking). Simulation is done to investigate: 1) the difference in recovered energy by implementing the regenerative braking at different axles with Category A or B systems, and 2) how the ratio between the front and rear axle e-machine power rating affects the amount of recovered regenerative braking energy. This in turn affects the overall brake balance distribution and impacts upon vehicle stability. Finally, the simulation result is analysed and discussed.
机译:在减速期间最大化回收的再生制动能量可以显着减少电动车辆(EV)能量消耗并增加范围。与前轮驱动(FWD)或后轮驱动(RWD)EV相比,所有带有2个电机(电子机器)的所有车轮驱动(AWD)EV(电子机器)在开发再生制动控制策略时具有更多的控制度自由度。通过同时在前桥,后桥或前轴上的再生制动,恢复的动能量将受到影响。此外,AWDEV中的前轴上的电子机器可以具有不同的尺寸或相同。因此,还应研究前后电子机器额定值之间的比率以了解减速度期间对回收能量的影响。本文以不同的驱动周期进行比较,开始对车辆制动行为的分析,以及再生制动系统的两种配置,类别A和B的比较。然后,AWDEV是模型的,并且其再生制动控制器是使用Ricardo开发的内部,专有仿真工具。此模型中的前轴电子机的功率等级变化。再生制动控制器模拟A或B再生制动系统具有各种控制策略(例如前轴或后轴仅再生制动,以及所有车轮再生制动)。模拟是为了调查:1)通过在A或B系统的不同轴上实现恢复能量的差异,以及2)前桥电子机额定电额定值之间的比率如何影响恢复的量再生制动能量。这反过来反应影响整体制动平衡分布和对车辆稳定性的影响。最后,分析并讨论了仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号