首页> 外文会议>SAE World Congress Experience >A Computational Methodology for Multi-Objective Fatigue Life Optimization of Welded Brake Flange on Full Beam Axles
【24h】

A Computational Methodology for Multi-Objective Fatigue Life Optimization of Welded Brake Flange on Full Beam Axles

机译:全梁轴上焊接制动法兰多目标疲劳寿命优化的计算方法

获取原文

摘要

Weld failure of a brake flange can put a driver’s life at risk. Two critical loading situations-torsional loading and vertical beaming loading-can result in brake flange failure. Two corresponding laboratory tests have been performed to ensure that the brake flanges pass the minimum standard requirement. The first is a brake reaction test, which is conducted in a situation that replicates the sudden braking operation of a vehicle. For this test, length, size, and penetration depth of the weld are critical parameters for determining the ability to prevent braking load failure. Among these factors, the length is the most crucial. The second test is a vertical beaming test, which is done in a condition that mimics the situation where a vehicle encounters a pot hole. Contrary to the previous test, an increased weld length can be detrimental in this case when the weld is moved to a higher stress location. Weld location and position can play an important role in maximizing the fatigue life to prevent such brake flange weld failures. In this paper, a computational approach is proposed for obtaining the optimal parameters to satisfy both tests. The weld life prediction is performed using a traction-structural stress method. A two-stage parametric modeling approach is suggested to perform the optimization process. The first stage determines the viability of uninterrupted/continuous weld to meet the two tests by positioning it along the inward and/or outward side of the brake flange. The second stage involves determining the optimal weld length by using a Design of Experiments (DOE) approach. When the length and positioning of the weld are optimized, components’ performance can significantly improve and the need for experimental testing is largely reduced.
机译:制动法兰的焊缝失效可以让驾驶员的寿命面临风险。两个关键负载局势 - 扭转装载和垂直光束装载 - 可导致制动法兰故障。已经进行了两个相应的实验室测试以确保制动法兰通过最低标准要求。首先是制动反应试验,其在复制车辆的突然制动操作的情况下进行。对于该测试,长度,尺寸和穿透深度焊缝是用于确定防止制动负载失效的能力的关键参数。在这些因素中,长度是最重要的。第二种测试是垂直光束测试,其在模仿车辆遇到罐孔的情况的条件下进行。与先前的测试相反,在这种情况下,当焊接移动到更高的应力位置时,增加的焊接长度可能是有害的。焊接位置和位置可以在最大化疲劳寿命中发挥重要作用,以防止这种制动法兰焊缝失败。在本文中,提出了一种用于获得最佳参数以满足两个测试的计算方法。使用牵引结构应力法进行焊接寿命预测。建议进行两级参数建模方法来执行优化过程。第一阶段确定不间断/连续焊接的可行性,通过沿着制动法兰的向内和/或向外侧定位它来满足两个测试。第二阶段涉及通过使用实验(DOE)方法的设计来确定最佳焊接长度。当焊缝的长度和定位经过优化时,部件的性能可能会显着改善,并且对实验测试的需求大大降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号