首页> 外文会议>US Combustion Meeting >Predicting Real Transportation Fuel Combustion Properties: Distinct Chemical Functionalities in Hydrocarbon Laminar Burning Velocities
【24h】

Predicting Real Transportation Fuel Combustion Properties: Distinct Chemical Functionalities in Hydrocarbon Laminar Burning Velocities

机译:预测真正的运输燃料燃烧特性:碳氢化合物层层燃烧速度的不同化学函数

获取原文

摘要

A set of laminar burning velocities for various hydrocarbon fuels is analysed for commonality with regard to each fuels chemical functional groups. However, though this approach makes sense from the view point of chemical kinetics, from theory, the laminar burning velocity also depends on the mass diffusivity and the flame temperatures that are imparted by the fuel/air mixtures, in addition to the contribution from the reaction kinetics. This paper delineates measured laminar burning velocities of a hydrocarbon library by multiple linear regressions to independently calculated fundamental quantities (heat capacity, density, thermal conductivity and reaction enthalpy), leaving any important differences in reaction kinetic potential unambiguously exposed. By this analysis, it is found that the laminar burning velocity of all saturated normal alkanes are closely equivalent, somewhat surprisingly, including that of methane and ethane. Burning velocities of the cycloalkane and isomerized alkane molecular class also fall consistently along this common branch. Large deviations from the common branch are observed only for molecules bearing the aromatic functionality, and for the unsaturated alkanes; ethylene, acetylene and iso-butene. The distinctiveness of these deviations, and the fundamental ordering responsible for the common branch are explained by the analysis of chemical kinetic model calculations. It is further shown, that any distinctive chemical kinetic character of higher hydrocarbon (>C_4) burning velocities, no matter the functionality, can be apportioned by the relative mass fraction of methyl (CH_3), methylene (CH_2) and Benzyl (C_6H_5CH_2) molecular fragments present in the fuel structure. Finally, the reverse of this fundamental analysis is utilized to make quantitative predictions of the laminar burning velocity for a series of real aviation fuels and gasolines, by the quantitation of their molecular fragments via Nuclear Magnetic Resonance Spectroscopy. It is shown that this approach can provide accurate and rapid predictions, superior to those of detailed chemical kinetic models, for combustion properties of real transportation fuels that are important to the performance and design of engine technologies.
机译:对于各种燃料化学官能团,分析了各种烃燃料的一组用于各种烃燃料的层状燃烧速度。然而,尽管这种方法从化学动力学的观点来看,从理论上,层状燃烧速度也取决于燃料/空气混合物赋予的质量扩散性和火焰温度,除了来自反应的贡献动力学。本文描绘了多元线性回归以独立计算的基本量(热容量,密度,导热和反应焓)测量的烃类燃烧速度,使反应动力学潜在明确暴露的任何重要差异。通过该分析,发现所有饱和正烷烃的层状燃烧速度紧密相当,有点令人惊讶,包括甲烷和乙烷。环烷烃和异构化烷烃分子类的燃烧速度也沿着该常用分支始终如一地脱落。仅针对芳族官能度和不饱和烷烃的分子观察到与共同分支的大偏差;乙烯,乙炔和异丁烯。通过分析化学动力学模型计算,解释了这些偏差的独特性,以及负责公共分支的根本排序。进一步示出的是,无论功能性,燃烧速度的任何独特的化学动力学,燃烧速度,都可以通过甲基(CH_3),亚甲基(CH_2)和苄基(C_6H_5CH_2)分子的相对质量分数分配燃料结构中存在的碎片。最后,通过通过核磁共振光谱定量它们的分子片段,利用该基本分析的反向对一系列实际航空燃料和汽油的层流燃烧速度进行定量预测。结果表明,这种方法可以提供精确快速的预测,优于详细的化学动力学模型,用于现实交通燃料的燃烧特性,这对发动机技术的性能和设计很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号