首页> 外文会议>International Conference on Physics of Cancer >From Elasticity to Inelasticity in Cancer Cell Mechanics: a Loss of Scale-Invariance
【24h】

From Elasticity to Inelasticity in Cancer Cell Mechanics: a Loss of Scale-Invariance

机译:从癌细胞机制中的弹性到绝缘性:衡量规模不变性的损失

获取原文

摘要

Soft materials such as polymer gels, synthetic biomaterials and living biological tissues are generally classified as viscoelastic or viscoplastic materials, because they behave neither as pure elastic solids, nor as pure viscous fluids. When stressed beyond their linear viscoelastic regime, cross-linked biopolymer gels can behave nonlinearly (inelastically) up to failure. In living cells, this type of behavior is more frequent because their cytoskeleton is basically made of cross-linked biopolymer chains with very different structural and flexibility properties. These networks have high sensitivity to stress and great propensity to local failure. But in contrast to synthetic passive gels, they can "afford" these failures because they have ATP driven reparation mechanisms which often allow the recovery of the original texture. A cell pressed in between two plates for a long period of time may recover its original shape if the culture medium brings all the nutrients for keeping it alive. When the failure events are too frequent or too strong, the reparation mechanisms may abort, leading to an irreversible loss of mechanical homeostasis and paving the way for chronic diseases such as cancer. To illustrate this discussion, we consider a model of immature cell transformation during cancer progression, the chronic myelogenous leukemia (CML), where the formation of the BCR-ABL oncogene results from a single chromosomal translocation t(9; 22). Within the assumption that the cell response to stress is scale invariant, we show that the power-law exponent that characterizes their mechanosensitivity can be retrieved from AFM force indentation curves. Comparing control and BCR-ABL transduced cells, we observe that in the later case, one month after transduction, a small percentage the cancer cells no longer follows the control cell power law, as an indication of disruption of the initial cytoskeleton network structure.
机译:诸如聚合物凝胶,合成生物材料和生物组织之类的软材料通常被归类为粘弹性或粘性材料,因为它们既不作为纯弹性固体,也不是纯粘性流体。当压力超出其线性粘弹性状态时,交联的生物聚合物凝胶可以非线性地(含有含有的)达到失败。在活细胞中,这种行为更频繁,因为它们的细胞骨架基本上由具有非常不同的结构和柔韧性的交联生物聚合物链组成。这些网络对压力的敏感性和对局部失败的巨大倾向。但与合成被动凝胶相比,它们可以“提供”这些故障,因为它们具有ATP驱动的拒绝机制,其通常允许恢复原始纹理。如果培养基带来所有营养物,则长时间在两个板之间压制在两个板之间的电池可以恢复其原始形状。当失败事件过于频繁或太强时,赔偿机制可能中止,导致机械稳态的不可逆转损失,并为癌症等慢性疾病铺平道路。为了说明本讨论,我们考虑在癌症进展期间的未成熟细胞转化模型,慢性髓性白血病(CML),其中BCR-ABL癌基因的形成是由单染色体易位T(9; 22)的形成。在假设细胞对压力的响应是规模不变的情况下,我们表明可以从AFM力缩进曲线检索其特征其机械敏感性的幂律指数。比较对照和BCR-ABL转导细胞,我们观察到在后面的情况下,转导后一个月,癌细胞不再遵循对照细胞动力法,作为初始细胞骨骼网络结构破坏的指示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号