首页> 外文会议>SAE International Conference on Icing of Aircraft, Engines, and Structures >A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C
【24h】

A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C

机译:暖表面上冰晶吸收的三层热力学模型:EMM-C

获取原文

摘要

Ingestion of high altitude atmospheric ice particles can be hazardous to gas turbine engines in flight. Ice accretion may occur in the core compression system, leading to blockage of the core gas path, blade damage and/or flameout. Numerous engine powerloss events since 1990 have been attributed to this mechanism. An expansion in engine certification requirements to incorporate ice crystal conditions has spurred efforts to develop analytical models for phenomenon, as a method of demonstrating safe operation. A necessary component of a complete analytical icing model is a thermodynamic accretion model. Continuity and energy balances are performed using the local flow conditions and the mass fluxes of ice and water that are incident on a surface to predict the accretion growth rate. In this paper, a new thermodynamic model for ice crystal accretion is developed through adaptation of the Extended Messinger Model (EMM) from supercooled water conditions to mixed phase conditions (ice crystal and supercooled water). A novel three-layer accretion structure is proposed and the underlying equations described. The EMM improves upon the original model for airframe icing, the Messinger Model, by permitting a linear temperature gradient through the ice and water layers. This in turn allows prediction of the time over which water exists in isolation on an initially warm surface, before an ice layer forms. This is of particular interest to engine icing, as surfaces may initially be significantly above freezing temperature, before cooling on exposure to ice particles. The method is solved in a multi-step approach, where the overall exposure time is divided into discrete windows, and the calculation performed over each window. This allows the local flow conditions to be updated between windows, permitting the incorporation of a reducing flow enthalpy due to particle evaporation, as well as transient engine operation. Model results are then compared to experimental results. Comparisons are made to solutions generated using the standard Messinger Model.
机译:摄入高海拔大气冰颗粒可能对飞行中的燃气轮机发动机有害。在核心压缩系统中可能出现冰蓄积,导致核心气体路径,叶片损坏和/或熄火堵塞。自1990年以来的众多发动机Powerloss事件归因于这种机制。发动机认证要求中的扩展融合了冰晶条件,这促使了开发现象的分析模型,作为证明安全操作的方法。完整分析糖合模型的必要组件是热力学吸收模型。使用局部流动条件和入射在表面上的冰和水的质量助熔剂来进行连续性和能量余额,以预测增生生长速率。在本文中,通过将延长的Messinger模型(EMM)从过冷水条件从超冷水条件改编到混合相条件(冰晶和过冷水)来开发新的热力动力学模型。提出了一种新的三层吸收结构,并描述了基础方程。 EMM通过允许通过冰和水层的线性温度梯度来改善机身锦标框的原始模型。这又允许预测在冰层形式之前在最初温暖的表面上隔离水的时间。发动机结冰是特别令人兴趣的,因为在暴露于冰颗粒的情况下,表面可以最初可以显着高于冷冻温度。该方法以多步骤方法解决,其中整体曝光时间被分成离散窗口,并且在每个窗口上执行的计算。这允许在窗口之间更新局部流动条件,允许由于颗粒蒸发而掺入减少流动焓,以及瞬态发动机操作。然后将模型结果与实验结果进行比较。使用标准Messinger模型生成的解决方案进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号