首页> 外文会议>Conference on quantum information and computation XIII >Analog quantum computing (AQC) by revisiting the underlying physics
【24h】

Analog quantum computing (AQC) by revisiting the underlying physics

机译:通过重访底层物理学来模拟量子计算(AQC)

获取原文

摘要

It has been proven that universal quantum computers based on qubits and classical analog networks both have superTuring capabilities. It is a grand challenge to computer science to prove that the combination of the two, in analog (continuous variable) quantum computing, offers supersuperTuring capability, the best we can achieve. Computing with continuous spins is now the most promising path AQC. Two papers at SPIE2014 described unbreakable quantum codes using continuous spins beyond what traditional qubits allow. To make this real, we must first develop a realistic ability to model and predict the behavior of networks of spin gates which act in part as polarizers. Last year I proposed a triphoton experiment, where three entangled photons go to linear polarizers set to angles θ_a, θ_b and θ_c. Assuming a "collapse of the wave function" yields predictions for the coincidence detection rate, R_3/R_0(θ_a,θ_b,θ_c) significantly different from the prediction of a new family of models based on classical Markov Random Fields (MRF) across space time, even though both yield the same correct prediction in the two-photon case. We cannot expect to predict systems of 100 entangled photons correctly if we cannot even predict three yet. Yanhua Shih is currently performing this experiment, as a first step to demonstrating a new technology to produce 100 entangled photons (collaborating with Scully) and understanding larger systems. I have also developed continuous-time versions of the MRF models and of "collapse of the wave function", so as to eliminate the need to assume metaphysical observers in general.
机译:已经证明,基于Qubits和古典模拟网络的通用量子计算机都具有取代功能。这是对计算机科学的巨大挑战,证明两者的结合,在模拟(连续变量)量子计算中提供超级验证能力,我们可以实现最好的。使用连续旋转的计算现在是AQC最有前途的道路。 SPIE2014的两篇论文描述了使用连续旋转的不可用的量子码,超出传统Qubits允许的速度。为了使这个真实的,我们必须首先制定建模的现实能力,并预测旋转门网络的行为,这些旋转门是偏振器的旋转门的行为。去年,我提出了一个三汉顿实验,其中三个缠结的光子转到了设置为角度θ_a,θ_b和θ_c的线性偏振器。假设波浪函数的“崩溃”产生重合检测率的预测,R_3 / R_0(θ_A,θ_b,θ_c)与基于时空的经典马尔可夫随机字段(MRF)的新型模型的预测显着不同,即使两者都在两光子盒中产生相同的正确预测。如果我们甚至无法预测三个,我们无法预期预测100个缠绕的光子系统。 Yanhua Shih目前正在进行这个实验,作为演示新技术的第一步,生产100个纠缠的光子(与Scully协作)并理解较大的系统。我还开发了MRF模型的连续时间版本,并“波浪函数崩溃”,以消除一般的需要假设形而上学观察者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号