首页> 外文会议>International Work-Conference on Bioinformatics and Biomedical Engineering >Classification Algorithms for Fetal QRS Extraction in Abdominal ECG Signals
【24h】

Classification Algorithms for Fetal QRS Extraction in Abdominal ECG Signals

机译:腹部心电图信号中胎儿QRS提取的分类算法

获取原文

摘要

Fetal heart rate monitoring through non-invasive electrocardiography is of great relevance in clinical practice to supervise the fetal health during pregnancy. However, the analysis of fetal ECG is considered a challenging problem for biomedical and signal processing communities. This is mainly due to the low signal-to-noise ratio of fetal ECG and the difficulties in cancellation of maternal QRS complexes, motion, etc. This paper presents a survey of different unsupervised classification algorithms for the detection of fetal QRS complexes from abdominal ECG signals. Concretely, clustering algorithms are applied to classify signal features into noise, maternal QRS complexes and fetal QRS complexes. Hierarchical, k-means, k-medoids, fuzzy c-means, and dominant sets were the selected algorithms for this work. A MATLAB GUI has been developed to automatically apply the clustering algorithms and display FHR monitoring. Real abdominal ECG signals have been used for this study, which validate the proposed method and show high efficiency.
机译:通过非侵入性心电图监测胎儿心率监测在临床实践中具有巨大的相关性,在怀孕期间监督胎儿健康。然而,胎儿ECG的分析被认为是生物医学和信号处理社区的具有挑战性问题。这主要是由于胎儿ECG的低信噪比和取消母体QRS复合物的困难,运动等。本文提出了对腹部ECG检测胎儿QRS复合物的不同无预测分类算法的调查信号。具体地,群集算法应用于将信号特征分类为噪声,母体QRS复合物和胎儿QRS复合物。分层,k均值,k-yemoids,模糊C型方式和主导集是这项工作的所选算法。已经开发出Matlab GUI以自动应用聚类算法并显示FHR监控。真实的腹部ECG信号已被用于本研究,该研究验证了所提出的方法并显示出高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号