首页> 外文会议>International Conference on Recent Advances in Engineering Computational Sciences >To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-Dominated Sorting Genetic Algorithm-II
【24h】

To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-Dominated Sorting Genetic Algorithm-II

机译:使用非主导分类遗传算法-II优化PMEDM过程中β-Ti合金的表面粗糙度和显微硬度

获取原文

摘要

The success of implant depends upon the surface characteristics like roughness, topography, chemistry and surface hardness. The fabrication of hard surface in combination with micron-/submicron- and nano-scale surface roughness is a great challenge for bio-manufacturing industries. Specifically, the surface micro-hardness (SMH) needs to be maximized while controlling the surface roughness (SR). In the present study, an attempt has been made on the application of Non-dominated Sorting Genetic Algorithm (NSGA)-II to predict the optimal conditions of powder mixed electric discharge machining parameters to maximize the SMH and to minimize the SR. The experiments were performed on a beta phase titanium alloy (β-Ti) workpiece at a self developed powder mixed electric discharge machining (PM-EDM) set-up. All the experimental results were used to develop the mathematical model using Taguchi based response surface methodology (RSM). The developed model was used to optimize the process parameters of PM-EDM process using NSGA-II. Finally, optimal solutions obtained from Pareto front are presented and compared with experimental data. The best optimal condition was 13 A peak current, 5 μs pulse duration, 8% duty cycle (longer pulse-interval) and 8 g/l silicon powder concentration for achieving a required low SR and high SMH.
机译:植入物的成功取决于像粗糙度,地形,化学和表面硬度的表面特性。结合硬表面与微米/亚微米和纳米级表面粗糙度的制造是生物制造行业一个很大的挑战。具体而言,表面显微硬度(SMH)需要同时控制表面粗糙度(SR)被最大化。在本研究中,已经尝试对非支配排序遗传算法(NSGA)-II的应用来预测的粉末混合放电加工参数的最佳条件以最大化SMH和所述SR最小化。实验是在一个自显影粉混合放电加工(PM-EDM)的建立上的β相的钛合金(β-Ti)的工件进行。所有的实验结果被用来开发使用基于田口响应曲面法(RSM)的数学模型。开发的模型用于优化使用NSGA-II PM-EDM工艺的工艺参数。最后,从Pareto最优前沿获得的最优解中,并和实验数据进行比较。最好最佳条件为13的峰值电流,5微秒的脉冲持续时间,8%的占空比(较长的脉冲间隔)和8克/升的硅粉末浓度用于实现所需的低SR和高SMH。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号