首页> 外文会议>ACS National Meeting Exhibition >PbS AND PbSe QUANTUM DOT SOLAR CELLS: ION EXCHANGE SYNTHESIS AND METAL HALIDE SURFACE PASSIVATION FOR HIGH EFFICIENCY
【24h】

PbS AND PbSe QUANTUM DOT SOLAR CELLS: ION EXCHANGE SYNTHESIS AND METAL HALIDE SURFACE PASSIVATION FOR HIGH EFFICIENCY

机译:PBS和PBSE量子点太阳能电池:离子交换合成和金属卤化物表面钝化高效率

获取原文

摘要

Solution-processed photovoltaics represent a promising route forward in reducing the cost of solar energy production. Quantum dot (QD) solids are one such solution-processed system that is being developed. In addition to being solution processable, QD solar cells (QDSCs) have a higher limiting single junction power conversion efficiency than that possible using conventional bulk or thin film semiconductors due to enhanced multiple exciton generation (MEG) in the QDs, thus are of interest for high efficiency, low cost systems. Here, we will describe work where we have developed a direct cation exchange synthesis to produce QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. Furthermore, we explore QDSCs using a metal halide to displace oleate ligands. The resulting QD-solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. The treatment protocol results in stoichiometric QD films with a deeper work function and band positions than other ligand exchanges. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. The best QD solar cells had power conversion efficiencies above 7% for PbS and exceed 6% for PbSe, which is a current record for PbSe QD solar cells.
机译:解决方案处理的光伏代表了降低太阳能生产成本的前途通用路线。量子点(QD)固体是正在开发的一种这样的溶液加工系统。除了解决方案的过程之外,QD太阳能电池(QDSC)还具有比QDS中增强的多个激子生成(MEG)的常规散装或薄膜半导体的更高限制单结电力转换效率,因此非常感兴趣高效率,低成本系统。在这里,我们将描述我们开发了直接阳离子交换合成的工作,以产生QD,具有大量尺寸和原位氯化物和镉钝化。合成的QD具有优异的空气稳定性,在环境条件下保持其光致发光量子产率超过30天。此外,我们使用金属卤化物探索QDSC以取代油酸配体。与用硫醇和有机卤化物处理的薄膜相比,所得QD固体的碳含量显着降低。治疗方案导致化学计量QD膜,其具有比其他配体交换更深的功函数和带位置的QD膜。这里开发的方法产生即使在接近微米的膜厚度下表现良好的太阳能电池,表明QD膜中的改进的载流子。最佳的QD太阳能电池具有高于7%的PBS的功率转换效率,并且PBSE超过6%,这是PBSE QD太阳能电池的当前记录。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号