首页> 外文会议>Four Decades of Progress in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System: Applications and Challenges >Modelling the functional role of microorganisms in the daily exchanges of carbon between atmosphere, plants and soil
【24h】

Modelling the functional role of microorganisms in the daily exchanges of carbon between atmosphere, plants and soil

机译:模拟微生物在大气,植物和土壤中碳日常交换中的功能作用

获取原文

摘要

There has been considerable research on organic carbon (OC) stocks in the upper layer of the soil but it has focused on semi-mechanistic predictions of OC stocks in the long term rather than on microbial processes acting on OC transformations. Published data lack of reference concerning the modelling of the short-term exchanges between atmosphere, plants, rhizobia and other microorganisms of soil. We think it is because the mechanistic role of microorganisms is poorly considered in most of the existing models. Compartmental theory is the most used to model the complex system of OC forms, with linear or no-linear propositions. Sometimes, the models did not consider explicitly an active microbial compartment and were often over parameterized. In contrast, the MOMOS proposition defined linearly the functional role of microorganisms with only a no-linear term linked to microbial respiration. It uses only 7 kinetic parameters having a clear ecological definition and being related to climate (all parameters), soil texture or pH (microbial respiration), and biological properties of debris inputs (enzymatic breakdown of plant debris and microbial mortality). The 3 other parameters (rates of humus stabilisation and enzyme assimilation of labile and stable humus) were found linked only to climate, suggesting that quality of humified materials should be more constant than OC forms from living materials. In coupling with soil water and production modules, the model emerges as a new theoretical basis to describe the life cycle and its applications to agro-ecology and global change.
机译:已经有有机碳(OC)股票相当多的研究在土壤上层,但它一直专注于从长远来看,而不是作用于OC转变微生物过程OC股的半机械的预测。公布的数据缺乏有关大气,植物根瘤菌和土壤等微生物之间的短期交流的造型参考。我们认为这是由于微生物的作用机制在大多数现有车型的不良考虑。房室理论是最用于的OC形式复杂系统建模,与直链或无线性命题。有时,模型没有明确考虑的活性微生物室与经常在参数化。与此相反,MOMOS命题线性限定只链接到微生物呼吸无线性项微生物的功能性作用。它使用具有明确定义的生态和被相关的气候(所有参数),土壤质地或pH(微生物呼吸),以及碎片投入生物学特性(植物碎片和微生物死亡的酶分解)只有7动力学参数。 3个其他参数(腐殖质稳定化率和不稳定的和稳定的腐殖质酶同化)被发现仅与气候,提示腐殖化的材料的那质量应该比从生活物资OC形式更加恒定。在与土壤水分和生产组件联接,该模型出现的新的理论依据来形容生命周期及其应用到农业生态与全球变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号