首页> 外文学位 >Modeling plant-soil-atmosphere carbon dioxide exchange using optimality principles.
【24h】

Modeling plant-soil-atmosphere carbon dioxide exchange using optimality principles.

机译:使用最佳原理对植物-土壤-大气中的二氧化碳交换进行建模。

获取原文
获取原文并翻译 | 示例

摘要

The exchange of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere plays a central role in the ecology of the biosphere and the climate system. Towards quantification of ecosystem-atmosphere CO 2 exchange, a generalized model of plant-soil-atmosphere CO2 exchange (OPTICAL) was described and evaluated using eddy covariance measurements of net ecosystem exchange of CO2 (NEE) in arctic, boreal, temperate, and tropical landscapes. The model requires no calibration and is based on theories of plant resource optimization and plant-soil nutrient feedbacks. The model predicts canopy photosynthetic capacity (Pcmax), canopy photosynthesis (P c), plant respiration (Rp), and soil heterotrophic respiration (RH). It can be applied globally using satellite-derived estimates of canopy light absorptance (f APAR), incident radiation (PAR), and air temperature (T air). The model provides the means by which to relate satellite observations such as the Normalized Difference Vegetation Index (NDVI) to the physiological status of vegetation and to ecosystem-atmosphere carbon exchange.; A unique aspect of the model is its use of a recursive filter for calculating photosynthetic acclimation based on the integrated effect of environmental conditions. Good agreement was found between modeled and observed Pcmax (r2 = 0.76), the latter derived from light response curves fit to estimates of gross ecosystem exchange (GEE). Consistent with theories of resource optimization, P cmax varied strongly with time-averaged absorbed PAR and temperature.; Modeled Pcmax combined with a 'big-leaf' canopy model explained 74 to 85% of the variability in GEE. The photo-acclimation model not only performed better than a traditional time-invariant model and as good or better than calibrated site-specific models, it did not require knowledge of vegetation type. The process of photo-acclimation appeared most important during periods of greatest transition in plant physiological status (e.g. spring and fall).; Agreement between modeled and observed NEE (r2 = 0.66 to 0.81) was similar to that for GEE, implying little additional error was introduced by predictions of Rp and R H. Despite excellent agreement between modeled and observed cumulative photosynthesis (r2 = 0.98) and ecosystem respiration (Rp + RH) (r 2 = 0.99), agreement for NEE was not as good (r2 = 0.75), due in part to NEE being the small difference between the two much larger fluxes of photosynthesis and ecosystem respiration.
机译:陆地生态系统与大气之间的二氧化碳(CO2)交换在生物圈生态系统和气候系统中起着核心作用。为了量化生态系统-大气CO 2交换,描述了一种通用的植物-土壤-大气CO 2交换模型(OPTICAL),并利用涡度协方差测量法对北极,北方,温带和热带地区CO2净生态系统交换(NEE)进行了评估。风景。该模型不需要校准,并且基于植物资源优化和植物-土壤养分反馈的理论。该模型预测冠层光合能力(Pcmax),冠层光合作用(P c),植物呼吸(Rp)和土壤异养呼吸(RH)。它可以通过使用来自卫星的冠层光吸收率(f APAR),入射辐射(PAR)和气温(T air)的估计值进行全局应用。该模型提供了将诸如标准化归一化植被指数(NDVI)之类的卫星观测值与植被的生理状况以及生态系统-大气碳交换联系起来的手段。该模型的一个独特方面是它使用递归过滤器基于环境条件的综合效应来计算光合适应性。在模拟的和观测到的Pcmax之间发现了很好的一致性(r2 = 0.76),后者是根据光响应曲线得出的,适合于生态系统总交换量(GEE)的估计。与资源优化理论一致,P cmax随时间平均吸收的PAR和温度变化很大。建模的Pcmax与“大叶”树冠模型相结合,解释了GEE变异的74%至85%。光适应模型不仅表现优于传统的时不变模型,而且表现优于或优于特定地点的校准模型,而且不需要了解植被类型。在植物生理状态的最大转变时期(例如春季和秋季),光适应过程显得最为重要。建模和观测到的NEE之间的一致性(r2 = 0.66至0.81)与GEE相似,这意味着Rp和R H的预测几乎没有引入额外的误差。尽管建模和观测到的累积光合作用(r2 = 0.98)与生态系统之间存在极好的一致性呼吸(Rp + RH)(r 2 = 0.99),对NEE的要求不那么好(r2 = 0.75),部分原因是NEE是两个较大的光合作用和生态系统呼吸通量之间的微小差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号