首页> 外文会议>Hydrovision International Conference and Exhibition >Modeling sub-surface jets and assessing water quality implications
【24h】

Modeling sub-surface jets and assessing water quality implications

机译:模拟亚表面喷射并评估水质含义

获取原文

摘要

Hydropower accounts for 65.9% of renewable electricity generation and 7% of total electricity generation in the USA. This provides a safe, reliable, efficient and cost effective renewable energy source. Downstream water quality is one of the major challenges faced by hydropower industry. Elevated Total Dissolved Gas (TDG) concentrations have been observed downstream of large hydropower facilities which can be detrimental for fish and ecology. In order to achieve compliance to Federal and State water quality regulations (regarding TDG) during re-licensing, existing hydropower facilities have to modify dam operation and/or retrofit the spillways to avoid high TDG concentrations downstream. This is an expensive, time-consuming and uncertain process. The purpose of this research is to make this process easier, less expensive and more predictable. One approach is to use diversion tunnels and other structures from the construction phase to reduce spillway flow. These tunnels usually release water close to or below the downstream water surface. With sufficient velocity, the jet can drag down the water surface, entrain air and increase TDG concentrations. We are investigating the physical processes involved in the development of sub-surface jets. A Computational Fluid Dynamics (CFD) model of sub-surface jet flow is developed using open-source CFD code OpenFOAM. We validated the model by simulating an experimental setup and comparing the results with measurements. The model uses Reynolds Averaged Navier Stokes (RANS) turbulence model and Volume of Fluid (VOF) method for water surface tracking. The validated CFD model will be expanded to full scale to model the Cabinet Gorge Hydroelectric Project, Idaho. The dam has existing tunnels which can be used to divert spillway flow. The CFD model will simulate the flow from the tunnels into the plunge pool and will be used to investigate the effect of flow rate, jet velocity, and release depth/tail-water depth on air entrainment and jet development. The findings of this research will provide a better understanding of sub-surface jet flow and eliminate uncertainties in the design/decision making process. This paper illustrates how standard RANS (k-ε), k-ω, and RNG (renormalization group) k-ε models do not represent measured data while a modified RANS k-ε model was successful.
机译:水电占再次可再生发电的65.9%,占美国总电力的7%。这提供了安全,可靠,高效且具有成本效益的可再生能源。下游水质是水电工业面临的主要挑战之一。在大型水电站的大型水电站下游已经观察到总溶解气体(TDG)浓度升高,这可能对鱼类和生态有害。为了在重新许可期间遵守联邦和州水质法规(关于TDG)的遵守情况,现有的水电设施必须修改大坝操作和/或改造溢洪道,以避免下游的高TDG浓度。这是一个昂贵,耗时和不确定的过程。本研究的目的是使这个过程更容易,更便宜,更可预测。一种方法是使用施工阶段的转移隧道和其他结构来减少溢洪道流。这些隧道通常释放靠近下游水面的水。具有足够的速度,喷射可以拖到水面,夹带空气并增加TDG浓度。我们正在调查涉及所述亚表面喷射器开发的物理过程。使用开源CFD码OpenFoam开发了子表面射流流量的计算流体动力学(CFD)模型。我们通过模拟实验设置并将结果与​​测量进行比较来验证模型。该模型使用Reynolds平均Navier Stokes(RANS)湍流模型和水面跟踪的流体(VOF)方法的体积。经过验证的CFD模型将扩展到全规模,以模拟机柜峡谷水电项目,爱达荷州。大坝具有现有的隧道,可用于转移溢洪道流。 CFD模型将从隧道中的流量模拟进入暴力池,并将用于调查流速,喷射速度和释放深度/尾水深度对空气夹带和喷射开发的影响。该研究的结果将更好地了解亚表面射流流动,并消除设计/决策过程中的不确定性。本文说明了标准RANS(k-ε),k-ω和rng(重新运行组)k-ε模型的rn(重新运行组)k-ε模型在修改的rans k-ε模型成功时不表示测量数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号