首页> 外文会议>ASME International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic MicroSystems >BENCHMARKING STUDY ON THE THERMAL MANAGEMENT LANDSCAPE FOR 3D ICS: FROM BACK-SIDE TO VOLUMETRIC HEAT REMOVAL
【24h】

BENCHMARKING STUDY ON THE THERMAL MANAGEMENT LANDSCAPE FOR 3D ICS: FROM BACK-SIDE TO VOLUMETRIC HEAT REMOVAL

机译:3D ICS热管理景观的基准研究:从后侧到容积热量移除

获取原文

摘要

An overview of the thermal management landscape with focus on heat dissipation from 3D chip stacks is provided in this study. Evolutionary and revolutionary topologies, such as single-side, dual-side and, finally, volumetric heat removal, are benchmarked with respect to a high-performance three-tier chip stack with an aggregate power dissipation of 672 W. The thermal budget of 50 K can be maintained by three topologies, namely, 1) dual-side cooling, implemented by a thermally active interposer, 2) interlayer cooling with 4-port fluid delivery and drainage at 100 kPa pressure drop, and 3) a hybrid approach combining interlayer with embedded back-side cooling. Of all the heat-removal concepts, interlayer cooling is the only approach that scales with the number of dies in the chip stack and hence, enables extreme 3D integration. However, the required size of the microchannels competes with the requirement of low TSV heights and pitches. A scaling study was performed to derive the TSV pitch that is compatible with cooling channels to dissipate 150 W/cm~2 per tier. An active IC area of 4 cm~2 was considered, which had to be implemented on the varying tier count in the stack. A cuboid form factor of 2 mm × 4 mm × 2.55 mm results from a die count of 50. The resulting microchannels of 2 mm length allow small hydraulic diameters and thus a very high TSV density of 1837 1/mm~2. The accumulated heat flux and the volumetric power dissipation are as high as 7.5 kW/cm~2 and 29kW/cm~3, respectively.
机译:热管理景观,重点从3D芯片堆叠散热的概述本研究中提供。进化和革命拓扑结构,例如单面,双面,最后,体积去热,相对于基准的高性能三层芯片堆叠672 W的50的热预算的集合体功耗K可通过三种拓扑,维持即,1)双侧冷却,通过热活性中介层,2)中间层用4端口的流体输送和100千帕的压力降的排水,以及3)的混合方法组合的层间冷却来实现具有嵌入的背侧冷却。所有的除热概念的,层间冷却是唯一的方法,与在芯片堆叠,因此模具的数量秤,使极端3D集成。然而,微通道的所需尺寸的竞争对手低TSV高度和间距的要求。进行缩放研究以导出TSV间距为与冷却通道以消散每层150瓦/平方厘米〜2兼容。要对在堆栈中的变层计数实施〜2被认为是为4厘米的有源集成电路面积,这有。的2毫米×4毫米×从50的模计数2.55毫米结果的长方体形状因子所得的长度为2mm的微通道允许小的水力直径,因此1837年1 /毫米〜2非常高的TSV密度。累积的热通量和体积功率消耗是分别高达7.5千瓦/厘米〜2和29kW /厘米〜3,。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号