首页> 外文期刊>Journal of chemical theory and computation: JCTC >Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant
【24h】

Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant

机译:有机液体的力场基准:密度,汽化焓,热容量,表面张力,等温压缩率,体积膨胀系数和介电常数

获取原文
获取原文并翻译 | 示例
           

摘要

The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys. 2003,119,11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed expose of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput Chem. 2010,31,671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.
机译:有机小分子的化学组成通常与氨基酸侧链或核酸中的碱基非常相似,因此没有先验的理由说明分子力学力场无法用单个参数集描述有机液体和生物分子。在这里,我们设计一个力场基准,以测试现有力场再现有机液体某些关键特性的能力,这些特性包括密度,汽化焓,表面张力,在恒定体积和压力下的热容,等温压缩率,体积膨胀系数和静态介电常数。远超过1200个实验测量值用于与146种有机液体的模拟进行比较。根据实验数据,已对介电常数(32个分子),恒压下的热容(三个分子)和等温压缩性(53个分子)进行了多项式插值,以得出实验数据,以便能够比较仿真结果。为了计算热容量,我们应用了两相热力学方法(Lin等人,J。Chem。Phys。2003,119,11792),该方法允许人们根据从热导率得出的状态密度来计算热力学性质。速度自相关函数。该方法是在GROMACS分子模拟软件包中的新实用程序g_dos中实现的,并详细介绍了基础方程。这项工作的目的是建立两个流行的力场的最新技术水平,OPLS / AA(用于液体模拟的全原子优化势能)和GAFF(广义琥珀色力场),以发现常见的瓶颈,即特别困难分子,并作为未来力场发展的参考点。为了营造公平的竞争环境,所有分子均以相同的参数设置进行评估,例如恒温器和恒压器,静电相互作用的处理以及系统大小(1000个分子)。来自独立数据集的气化密度和焓基于Vanommeslaeghe等人使用CHARMM通用力场(CGenFF)进行的模拟。 (J.Comput Chem.2010,31,671)包括在内以进行比较。我们发现,总的来说,OPLS / AA力场的性能要比GAFF好一些,但是两个力场的表面张力和介电常数的再现存在重大问题。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号