首页> 外文会议>Society of Petroleum Engineers Annual Technical Conference >Modelling Heavy Oil Viscosity During Thermal Stimulation Using the Free Volume Theory
【24h】

Modelling Heavy Oil Viscosity During Thermal Stimulation Using the Free Volume Theory

机译:使用自由体积理论在热刺激期间建模重油粘度

获取原文

摘要

Large errors in oil viscosity predictions result in large production rate errors during numerical simulation, due to a first-order dependency of flow rates on viscosity.Questions that arise during thermal simulation studies of heavy oil are(1)which viscosity-temperature model could be sufficiently well based on molecular physics such that viscosity prediction,as a function of temperature,would be possible if only oil composition is available;(2)in which temperature range do viscosity predictions need to be most accurate so as to ensure most accurate recovery predictions–the high or the low endThis work will provide simulation engineers with additional tools and information to address these questions,and more accurately model production of heavy oil under thermal stimulation,by providing a viscosity model based on physical properties of molecular structure and thermodynamic behavior,and additionally,will show that the priority temperature range depends on the thermal recovery method. The Free Volume Model(FVM),based on the concept of the‘available free space to which a molecule can move under shear stress’,is applied in this work to three different heavy oils to calculate viscosity as a function of temperature.The model was first extended for application to extra-long chain molecules up to C64H130 by de la Porte(2012)and de la Porte and Kossack(2014);the present work will provide users with guidelines to estimate the FVT molecular characteristics for a resin-asphaltene heavy pseudo-component. Furthermore,the range of temperatures at which accurate viscosity prediction is essential for more accurate oil recovery predictions is investigated for various recovery methods,such as cyclic steam stimulation(CSS),line-drive steam stimulation(SLD),and steam-assisted gravity-drainage(SAGD). Analytical models are used to predict the sensitivity to the viscosity error in a specific temperature range, followed by numerical simulation to confirm the findings. This research,the first to extend the Free Volume Theory to heavy oil components,will contribute towards more accurate numerical simulation of heavy oil reservoirs.
机译:由于在数值模拟期间,油粘度预测中的大误差导致数值模拟期间的大量生产率误差,由于流量率的粘度的一流依赖性。在重油热模拟研究期间出现的追踪是(1)哪种粘度温度模型基于分子物理的充分良好,使得粘度预测作为温度的函数,如果只有油组合物可用;(2)在其中温度范围内的粘度预测需要最准确,以确保最准确的恢复预测 - 高端或低端工作将提供仿真工程师,通过提供基于分子结构和热力学行为的物理性质的粘度模型来解决这些问题,以及在热刺激下更准确地模型生产重油。另外,将显示优先级温度范围取决于热回收方法。基于分子可以在剪切应力下移动的“可用自由空间的概念”的自由体积模型(FVM)应用于这项工作到三种不同的重油以计算粘度作为温度的函数。模型首先是延长到迄今为止迄今为止的超长链分子延长至C64H130(2012年)和De La Porte和Kossack(2014年);本作当前的工作将为用户提供估计树脂沥青质的FVT分子特性的指导方针重伪组件。此外,针对各种恢复方法研究了精确粘度预测的温度范围,该温度粘度预测对于更准确的储存预测,例如循环蒸汽刺激(CSS),线路驱动蒸汽刺激(SLD)以及蒸汽辅助重力 - 排水(SAGD)。分析模型用于预测特定温度范围内对粘度误差的敏感性,然后进行数值模拟以确认发现。本研究首先将自由量理论延伸到重油成分,将有助于更准确的重油储层数值模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号