首页> 外文会议>ASME international fuel cell science, engineering, and technology conference >NON-ISOTHERMAL HYDRODYNAMIC MODELLING OF THE FLOWING ELECTROLYTE CHANNEL IN A FLOWING ELECTROLYTE-DIRECT METHANOL FUEL CELL
【24h】

NON-ISOTHERMAL HYDRODYNAMIC MODELLING OF THE FLOWING ELECTROLYTE CHANNEL IN A FLOWING ELECTROLYTE-DIRECT METHANOL FUEL CELL

机译:流动电解质直接甲醇燃料电池流动电解质通道的非等温液动力学建模

获取原文

摘要

The performance of a direct methanol fuel cell (DMFC) can be significantly reduced by methanol crossover. One method to reduce methanol crossover is to utilize a flowing electrolyte channel. This is known as a flowing electrolyte-direct methanol fuel cell (FE-DMFC). In this study, recommendations for the improvement of the flowing electrolyte channel design and operating conditions are made using previous modelling studies on the fluid dynamics in the porous domain of the flowing electrolyte channel, and on the performance of a ID isothermal FE-DMFC incorporating multiphase flow, in addition to modelling of the non-isothermal effects on the fluid dynamics of the FE-DMFC flowing electrolyte channel. The results of this study indicate that temperature difference between flowing electrolyte inflow and the fuel cell have negligible hydrodynamic implications, except that higher fuel cell temperatures reduce pressure drop. Reducing porosity and increasing permeability is recommended, with a porosity of around 0.4 and a porous material microstructure typical dimension around 60-70 um being potentially suitable values for achieving these goals.
机译:通过甲醇交叉可以显着降低直接甲醇燃料电池(DMFC)的性能。减少甲醇交叉的一种方法是利用流动的电解质通道。这称为流动的电解质 - 直接甲醇燃料电池(Fe-DMFC)。在该研究中,使用先前的模型研究流动电解质通道中的流体动力学和掺入多相的ID等温Fe-DMFC的流体动力学的先前建模研究,为改善流动电解质通道设计和操作条件的建议。除了对Fe-DMFC流动电解质通道的流体动力学建模外,流动还流动。该研究的结果表明,除了更高的燃料电池温度降低压降之外,流动电解质流入和燃料电池之间的温差具有可忽略的流体动力学意义。推荐减少孔隙率和增加的渗透性,孔隙率为约0.4,多孔材料微观结构典型尺寸约为60-70μm,是实现这些目标的潜在合适的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号