首页> 外文会议>Nanotech,Microtech,Biotech,Cleantech Proceedings >Differentiating electro-catalytic reaction of hydride with respect to a non-Pt catalyst morphology based on first-principles: extended surfaces versus nanoparticles
【24h】

Differentiating electro-catalytic reaction of hydride with respect to a non-Pt catalyst morphology based on first-principles: extended surfaces versus nanoparticles

机译:基于第一原理的基于第一原理的氢化物相对于非Pt催化剂形态的电催化反应:延伸表面与纳米颗粒

获取原文

摘要

We conducted first-principles electronic structure calculations and ab-initio molecular dynamics (MD) based on density functional theory (DFT) to obtain the fundamental electrocatalytic properties of a hydride (borohydride) adsorption on a non-Pt catalyst (Osmium) with respect to catalyts’ facet and morphology. We found that the binding energy and the structure of the borohydride change with respect to the Os-2nm facets: ( ) , ( ) , . These fundamental properties can predict the reactivity of such facets under electrochemcial environment. We note that the electro-catalytic activity of the Os decreases in the following order: ( ) > ( ) > following the same trend in the binding energies. With respect to the catalyst morphology (extended surface vs nanoparticle), the reactivity is predicted by the combined effect of the strength of interaction of both the borohydride and the water molecule. On the otherhand, the size of the nanoparticle is found to affect the binding energy of the borohydride via the significant change in the nanoparticle structure due to temperature. These results are seen to provide valuabe insights in the design of new catalyts systems for borohydride oxidation as well as in the modeling of nanoparticle catalysts under electrochemical conditions.
机译:我们基于密度泛函理论(DFT)进行了第一原理电子结构计算和AB-Initio分子动力学(MD),以获得相对于非Pt催化剂(Osmium)对非Pt催化剂(锇)的氢化物(硼氢化氢)吸附的基本电催化性质。催化方面和形态。我们发现结合能量和硼氢化氢化物的结构相对于OS-2NM小平面的变化:(),(),。这些基本特性可以预测电化学环境下这种刻面的反应性。我们注意到,OS的电催化活性以下列顺序减少:()>()>在结合能中的相同趋势之后。关于催化剂形态(延长表面Vs纳米粒子),通过硼氢化氢和水分子的相互作用强度的综合效应来预测反应性。在其他手中,发现纳米粒子的尺寸通过温度通过纳米颗粒结构的显着变化影响硼氢化氢酐的结合能。这些结果被认为在电化学条件下提供硼氢化物氧化新催化系统的损益表中的valabe见解,以及在电化学条件下的纳米颗粒催化剂的建模中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号