首页> 外文会议>Annual NSTI nanotechnology conference and expo;TechConnect world innovation conference expo >Differentiating electro-catalytic reaction of hydride with respect to a non-Pt catalyst morphology based on first-principles: extended surfaces versus nanoparticles
【24h】

Differentiating electro-catalytic reaction of hydride with respect to a non-Pt catalyst morphology based on first-principles: extended surfaces versus nanoparticles

机译:基于第一原理,区分氢化物相对于非Pt催化剂形态的电催化反应:扩展表面与纳米颗粒

获取原文
获取外文期刊封面目录资料

摘要

We conducted first-principles electronic structure calculations and ab-initio molecular dynamics (MD) based on density functional theory (DFT) to obtain the fundamental electrocatalytic properties of a hydride (borohydride) adsorption on a non-Pt catalyst (Osmium) with respect to catalyts' facet and morphology. We found that the binding energy and the structure of the borohydride change with respect to the Os-2nm facets: (1010) , (1100) , (0001). These fundamental properties can predict the reactivity of such facets under electrochemcial environment. We note that the electro-catalytic activity of the Os decreases in the following order: (1010) > (1100) > (0001) following the same trend in the binding energies. With respect to the catalyst morphology (extended surface vs nanoparticle), the reactivity is predicted by the combined effect of the strength of interaction of both the borohydride and the water molecule. On the otherhand, the size of the nanoparticle is found to affect the binding energy of the borohydride via the significant change in the nanoparticle structure due to temperature. These results are seen to provide valuabe insights in the design of new catalyts systems for borohydride oxidation as well as in the modeling of nanoparticle catalysts under electrochemical conditions.
机译:我们基于密度泛函理论(DFT)进行了第一性原理的电子结构计算和从头算分子动力学(MD),从而获得了氢化物(硼氢化物)吸附在非Pt催化剂(Osmium)上的基本电催化性能催化剂的面和形态。我们发现结合能和硼氢化物的结构相对于Os-2nm晶面发生了变化:(1010),(1100),(0001)。这些基本性质可以预测此类小平面在电化学环境下的反应性。我们注意到,Os的电催化活性按以下顺序降低:(1010)>(1100)>(0001)遵循相同的结合能趋势。关于催化剂的形态(扩展的表面与纳米颗粒的关系),反应性是由硼氢化物和水分子的相互作用强度的综合作用预测的。另一方面,发现纳米颗粒的尺寸通过由于温度引起的纳米颗粒结构的显着变化影响硼氢化物的结合能。这些结果被认为在硼氢化物氧化的新催化剂体系设计以及电化学条件下的纳米颗粒催化剂建模中提供了有价值的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号