首页> 外文会议>IUTAM Symposium on Full-field Measurements and Identification in Solid Mechanics >Identification of deformation mechanism in abalone shells through AFM and digital image correlation
【24h】

Identification of deformation mechanism in abalone shells through AFM and digital image correlation

机译:AFM和数字图像相关释放鲍鱼壳变形机制

获取原文

摘要

In contrast to man-made materials, nature can produce materials with remarkable mechanical properties from relatively weak constituents. Nacre from seashells is a compelling example: despite being comprised mostly of a fragile ceramic (polygonal calcium carbonate tablets), it exhibits surprisingly high levels of strength and toughness. This performance is the result of an elegant hierarchical microstructure containing a small volume fraction of biopolymers at interfaces. The product is a composite material that is stiff and hard yet surprisingly tough, an essential requirement to protect the seashell from predators. Building a comprehensive understanding of the multiscale mechanisms that enable this performance represents a critical step toward realizing strong and tough bioinspired materials. This paper details a nanoscale experimental investigation into the toughening mechanisms in natural nacre and presents a way to translate this understanding to the design of new bioinspired composites. In situ three point bending fracture tests are performed to identify and quantify the toughening mechanisms involved during the fracture of natural nacre at the nanoscale. At the macro and micro scales, previous fracture tests [1, 2] performed in situ enabled observation of spreading of damage outward from the crack tip. In this study, fracture tests are performed in situ an atomic force microscope to link the larger-scale damage spreading to sliding within the tabletbased microstructure. To quantify the magnitude of sliding and its distribution, images from the in situ AFM fracture tests are analyzed using standard and new algorithms based on digital image correlation techniques which allow for discontinuous displacement fields. Ultimately, this comprehensive methodology provides a framework for broad experimental investigations into the failure mechanisms of bio- and bio-inspired materials.
机译:与人造材料相比,性质可以产生具有相对较弱的成分的具有显着机械性能的材料。来自贝壳的珍珠是一个令人沮丧的例子:尽管包括大多是一种脆弱的陶瓷(多边形碳酸钙片),但它表现出令人惊讶的高度的强度和韧性。这种性能是优雅的分层微观结构的结果,其界面处的含有小体积分数的生物聚合物。该产品是一种复合材料,艰难而艰难但令人惊讶地艰难,这是保护捕食者保护贝壳的必要要求。建立对多尺度机制的全面了解,使得这种性能成为实现强大和坚韧的生物悬浮材料的关键步骤。本文详述了纳米级实验研究进入天然珍珠的增韧机制,并提出了一种将这种理解转化为新的生物悬浮复合材料的设计。原位三点弯曲骨折试验进行识别和量化在纳米级的天然珍珠菌骨折期间所涉及的增韧机制。在宏观和微观的尺度上,以原位执行的先前断裂试验[1,2]使得能够观察从裂缝尖端向外的损坏。在该研究中,裂缝试验原位进行原子力显微镜进行,以将较大尺度的损坏链接到平板玻璃内的微观结构的滑动。为了量化滑动的大小及其分布,使用基于数字图像相关技术的标准和新算法来分析来自原位AFM骨折测试的图像,其允许不连续位移场。最终,这种综合方法提供了一种广泛的实验研究框架,进入生物和生物启发材料的失败机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号