首页> 美国卫生研究院文献>Nanomaterials >Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique
【2h】

Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique

机译:用数字图像相关技术揭示超细颗粒Ti的可塑性和变形机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The conventional engineering stress-strain curve could not accurately describe the true stress-strain and local deformability of the necking part of tensile specimens, as it calculates the strain by using the whole gauge length, assuming the tensile specimen was deformed uniformly. In this study, we employed 3D optical measuring digital image correlation (DIC) to systematically measure the full strain field and local strain during the whole tensile process, and calculate the real-time strain and actual flow stress in the necking region of ultrafine-grained (UFG) Ti. The post-necking elongation and strain hardening exponent of the UFG Ti necking part were then measured as 36% and 0.101, slightly smaller than those of the coarse grained Ti (52% and 0.167), suggesting the high plastic deformability in the necking part of the UFG Ti. Finite elemental modeling (FEM) indicates that when necking occurs, strain is concentrated in the necking region. The stress state of the necking part was transformed from uniaxial in the uniform elongation stage to a triaxial stress state. A scanning electron microscopic (SEM) study revealed the shear and ductile fracture, as well as numerous micro shear bands in the UFG Ti, which are controlled by cooperative grain boundary sliding. Our work revealed the large plastic deformability of UFG metals in the necking region under a complex stress state.
机译:传统的工程应力 - 应变曲线不能准确地描述拉伸样品的颈部颈部的真正应力 - 应变和局部可变形性,因为它通过使用整个规格长度计算应变,假设拉伸试样均匀变形。在该研究中,我们使用3D光学测量数字图像相关(DIC)来系统地测量整个拉伸过程中的全应变场和局部应变,并计算超细粒度的颈颈缩放区域中的实时应变和实际流量应变(UFG)TI。然后测量UFG Ti颈颈部分的颈颈伸长率和应变硬化指数为36%和0.101,略小于粗粒Ti(52%和0.167),表明颈部颈部的高塑性变形性UFG TI。有限元素建模(FEM)表明当缩颈时,菌株集中在颈缩区域中。颈部部分的应力状态从单轴在均匀伸长级中转化为三轴应力状态。扫描电子显微镜(SEM)研究揭示了剪切和延展性裂缝,以及UFG TI中的许多微剪切带,其由协作晶界滑动控制。我们的作品揭示了在复合应力状态下颈缩区域中UFG金属的大塑性可变形性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号