首页> 外文会议>SAE World Congress and Exhibition >Development of Fluid-Structure Interaction CAE Method to Assess Effect of Fuel Slosh on Fuel Level Sensor
【24h】

Development of Fluid-Structure Interaction CAE Method to Assess Effect of Fuel Slosh on Fuel Level Sensor

机译:流体结构相互作用CAE方法的研制评估燃料水平传感器燃料钢筋的影响

获取原文

摘要

Fuel level sensors are used to indicate the amount of fuel in the tank of an automobile. The most common type of fuel level sensor is the float-arm sensor in which a float is connected to a resistance band via an arm. The fuel volume inside the tank sets the height of the float which in turn is converted to a resistance value. This resistance value is converted into gauge reading that is displayed on the dashboard. Whereas this method is widely popular due to its low cost and durability, fuel slosh phenomenon imposes a major challenge. The fuel slosh waves under numerous driving maneuvers impose dynamic drag/lift forces on the float which result into fluctuations in its position (i.e. float height). Under severe acceleration or braking maneuvers, the float can actually submerge inside the liquid and fail to predict location of the free surface. These fluctuations can cause erroneous fuel indication. This is especially critical at low fuel levels where such errors may have significant impact on Distance-to-Empty (DTE) estimations. Therefore, it is important to establish a CAE methodology to accurately predict effect of fuel slosh on motion of the float. This paper summarizes activities carried out by the fuel system team at Ford Motor Company to develop and validate such CAE methodology. The CAE method has been developed using commercial software: Star-CCM+. Fuel slosh is modeled using Eulerian multiphase VOF approach. Dynamic forces on the float and its resulting motion are modeled using a fluid-structure interaction method known as ‘Dynamic Fluid Body Interaction (DFBI)’. Motion of the float is captured using the moving mesh approach called ‘Overset Mesh’. Predictions of float height [h(t)] from simulation are compared with a vehicle test results and detailed discussion on CAE-test correlation is provided. Further discussion on best practices for such method is also included in this paper. In conclusion, the Fluid-Structure Interaction (FSI) method accurately predicts effect of fuel slosh and can be integrated in the product development process for evaluating effect of various tank features, baffles and float shapes to ensure a reliable fuel indication system.
机译:燃料电平传感器用于指示汽车罐中的燃料量。最常见的燃料电平传感器是浮臂传感器,其中浮子通过臂连接到电阻带。罐内的燃料量设置浮子的高度,这又转换为电阻值。这种电阻值被转换为仪表板上显示的仪表读数。然而,由于其低成本和耐用性,这种方法很受欢迎,而燃料Slosh现象则造成了重大挑战。在众多驾驶演习下的燃料槽浪潮施加在浮子上的动态拖曳力,导致其位置的波动(即浮动高度)。在严重的加速或制动时,浮子实际上可以在液体内浸没,并且无法预测自由表面的位置。这些波动可能导致错误的燃料指示。这在低燃料水平时特别关键,其中这些误差可能对距离 - 空(DTE)估计产生显着影响。因此,重要的是建立CAE方法,以准确地预测燃料SLOSH对浮子运动的影响。本文总结了福特汽车公司燃料系统团队开发和验证此类CAE方法的活动。 CAE方法已使用商业软件开发:Star-CCM +。使用欧拉多相VOF方法进行建模燃料SLOSH。浮子上的动态力及其产生的运动使用称为“动态流体体相互作用(DFBI)”的流体结构相互作用方法进行建模。使用名为“versteT网格”的移动网格方法捕获浮动的运动。将浮动高度[H(t)]从模拟进行预测与车辆测试结果进行比较,并提供了关于CAE-测试相关的详细讨论。本文还包括关于这种方法的最佳实践的进一步讨论。总之,流体结构相互作用(FSI)方法精确地预测燃料槽的效果,可以集成在产品开发过程中,用于评估各种罐特征,挡板和浮子形状的效果,以确保可靠的燃料指示系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号