首页> 外文会议>US National Combustion Meeting >Large eddy simulation of second-law efficiency losses in nonpremixed turbulent flames
【24h】

Large eddy simulation of second-law efficiency losses in nonpremixed turbulent flames

机译:非增长湍流火焰中二级效率损失的大型涡流模拟

获取原文

摘要

The loss of availability in turbulent nonpremixed flames due to internal irreversibility or local entropy generation is predicted using large eddy simulation (LES). Minimization of entropy generation (or exergy destruction) is an effective approach to increase the efficiency of energy and combustion systems in view of the second law of thermodynamics. The goal is to improve the work-producing capacity of the system by lowering the irreversible losses occurring during turbulent combustion processes. In this study, a transport equation for the filtered entropy is considered in LES. This equation includes entropy generation effects due to viscous dissipation, heat transfer, mass diffusion and chemical reaction, which appear as unclosed source terms. The closure of all these terms are provided by a novel methodology developed based on the filtered density function (FDF). This methodology, termed the entropy FDF (En-FDF), provides the joint probability density function of scalar and entropy fields. An exact transport equation is derived for the En-FDF which includes the effects of chemical reaction and its entropy generation contribution in closed forms. The unclosed terms are modeled by a system of stochastic differential equations, which is solved by a Lagrangian Monte Carlo method. The methodology is employed for LES of a nonpremixed turbulent methane jet flame. Predictions are validated by comparing with entropy statistics derived from experimental thermo-chemical data. All entropy statistics show favorable agreements with the data. The local entropy generation effects are obtained from the En-FDF and analyzed. The results illustrate the structure of irreversible losses in nonpremixed turbulent flames. It is shown that heat conduction and chemical reaction are the dominant entropy production mechanisms in this flame.
机译:使用大涡模拟(LES)预测由于内部不可逆转性或局部熵产生引起的湍流非增速火焰中的可用性丧失。熵产生(或漏洞破坏)的最小化是鉴于热力学的第二律法,提高能量和燃烧系统效率的有效方法。目标是通过降低湍流燃烧过程中发生的不可逆损耗来改善系统的工作能力。在该研究中,在LES中考虑过滤熵的传输方程。该方程包括由于粘性耗散,传热,质量扩散和化学反应引起的熵产生效应,其出现为未封闭的源术语。所有这些术语的关闭由基于过滤密度函数(FDF)开发的新型方法提供。该方法称为熵FDF(EN-FDF),提供标量和熵场的联合概率密度函数。衍生精确的传输方程,用于en-FDF,其包括化学反应的影响及其熵产生封闭形式的贡献。未闭合的术语由随机微分方程系统进行建模,该系统由拉格朗日蒙特卡罗方法解决。该方法用于非增剂湍流甲烷喷射火焰的LES。通过与从实验热化学数据衍生的熵统计数据进行比较来验证预测。所有熵统计数据显示与数据的有利协议。从en-FDF获得局部熵生成效应并分析。结果说明了非增殖湍流火焰中不可逆损失的结构。结果表明,热传导和化学反应是该火焰中的主要熵生产机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号