首页> 外文会议>US National Combustion Meeting >Using MD to Calculate the Diffusion Coefficients of Hydrocarbons
【24h】

Using MD to Calculate the Diffusion Coefficients of Hydrocarbons

机译:使用MD计算碳氢化合物的扩散系数

获取原文

摘要

Developing more efficient engines depends greatly on the ability to model the combustion process computationally. Reliable computational simulations require knowledge of chemical kinetics as well as molecular transport properties. Gas-phase molecular transport properties such as viscosity, thermal conductivity, and diffusion play critical roles in combustion processes such as flame profile shapes, flame velocities, flame extinction, and pollutant product formation. Specifically, it has been shown that 10% inaccuracy in diffusion coefficients can lead to order of magnitude errors in macroscopic combustion models. Traditionally, diffusion coefficients were measured in experiments, but experiments are monetarily expensive, time consuming, and unreliable in extreme temperature and pressure conditions. Thus, gas kinetic theory (GKT) using classical mechanics with spherical intermolecular potentials is commonly used to derive the molecular diffusion coefficients necessary in combustion models. However, not only does GKT yield unreliable predictions in general, but it is inaccurate when used to calculate diffusion coefficients for molecules of significant non-spherical shape. We utilized molecular dynamics (MD) simulations in order to overcome the limitations of experiment and GKT. The advantage of using an MD simulation to calculate the diffusion coefficient of a given system is that it is less expensive than an experiment, less time-consuming, can simulate extreme conditions much more readily than an experiment, and it is more accurate than GKT for non-spherical molecules. We utilized molecular dynamics (MD) simulations, with a detailed atomistic model that includes intramolecular forces, Van der Waals interactions, and Columbic interactions, to predict the diffusion coefficients of various classes of hydrocarbons in nitrogen environments. We demonstrated the efficacy of our approach to calculate diffusion coefficients and the advantages it maintains over GKT by showing that the diffusion coefficients derived from MD simulations were more accurate than those from GKT when compared with experiments. Additionally, we note that the discrepancy between results obtained with MD and GKT increases with the eccentricity, size, and anisotropy of the molecule. The MD derived diffusion coefficients fit the expected temperature- and pressure-dependence trends. The ability, at a relatively low cost, to use MD to quickly and easily develop more accurate diffusion coefficients of hydrocarbons common in fuels will lead to more accurate macroscopic scale combustion models, which will lead to more efficient engines.
机译:开发更高效的引擎大大取决于计算燃烧过程的能力。可靠的计算模拟需要了解化学动力学以及分子运输性能。诸如粘度,导热率和扩散的气相分子运输性质在燃烧过程中起重要作用,例如火焰轮廓形状,火焰速度,火焰消光和污染物产物形成。具体地,已经表明扩散系数的10%不准确可以导致宏观燃烧模型中的幅度误差的顺序。传统上,在实验中测量扩散系数,但实验在极端温度和压力条件下被单项昂贵,耗时和不可靠。因此,通常用于使用球形分子间电位的经典力学的气体动力学理论(GKT)用于导出燃烧模型所需的分子扩散系数。然而,不仅GKT产生不可靠的预测一般,但用于计算扩散系数显著非球形形状的分子时,它是不准确的。我们利用分子动力学(MD)模拟,以克服实验和GKT的局限性。使用MD模拟来计算给定系统的扩散系数的优点是它比实验更便宜,耗时较少,可以比实验更容易地模拟极端条件,并且它比GKT更准确非球形分子。我们利用分子动力学(MD)仿真,具有详细的原子模型,包括分子内力,范德华相互作用和牙褶相互作用,以预测氮环境中各种烃的扩散系数。我们证明了我们通过计算衍生自MD模拟的扩散系数比从GKT与实验相比的扩散系数更精确的扩散系数的效果和它通过GKT来实现的优点。此外,我们注意到,用MD和GKT获得的结果之间的差异随着分子的偏心,大小和各向异性而增加。 MD导出的扩散系数适合预期的温度和压力依赖性趋势。以相对较低的成本使用MD来快速且易于开发燃料中常见的碳氢化合物的更准确的扩散系数的能力将导致更准确的宏观刻度燃烧模型,这将导致更有效的发动机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号