【24h】

Users' Traffic on Two-sided Internet Platforms. Qualitative Dynamics

机译:用户对双面互联网平台的流量。定性动态

获取原文

摘要

Internet platforms' traffic defines important characteristics of platforms, such as price of services, advertisements, speed of operations. One can estimate the traffic with the traditional time series models like ARIMA, Holt-Winters, functional and kernel regressions. When using these methods, we usually want to smooth-out noise and remove various external effects in the data and obtain short-term predictions of processes. However, these models do not necessarily help us to understand the underlying mechanism and the tendencies of the processes. In this article, we discuss the dynamical system approach to the modeling, which is designed to discover the underlying mechanism and the qualitative properties of the system's phase portrait. We show how to reconstruct the governing differential equations from data. The external effects are modeled as system's parameters (initial conditions). Utilizing this new approach, we construct the models for the volume of users, interacting through Internet platforms, such as Amazon.com, Homes.mil or Wikipedia.org. Then, we perform qualitative analysis of the system's phase portrait and discuss the main characteristics of the platforms.
机译:互联网平台的流量定义了平台的重要特征,例如服务的价格,广告,操作速度。人们可以估算与Arima,Holt-Winters,功能和内核回归等传统时间序列模型的流量。使用这些方法时,我们通常希望平滑噪声并在数据中删除各种外部效果并获得过程的短期预测。然而,这些模型不一定帮助我们理解潜在机制和过程的趋势。在本文中,我们讨论了模型的动态系统方法,该方法旨在发现系统相位肖像的底层机制和定性特性。我们展示了如何从数据重建管理微分方程。外部效果被建模为系统的参数(初始条件)。利用这种新方法,我们构建用户卷的模型,通过互联网平台进行交互,例如Amazon.com,Homes.mil或Wikipedia.org。然后,我们对系统的相位纵向进行定性分析,并讨论平台的主要特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号