首页> 外文会议>Society of Petroleum Engineers International Heavy Oil Conference >Reducing the CO2 Footprint: Employing Cogeneration to Improve the Energy Efficiency of Thermal Oil Recovery Projects
【24h】

Reducing the CO2 Footprint: Employing Cogeneration to Improve the Energy Efficiency of Thermal Oil Recovery Projects

机译:减少CO2占地面积:采用热电联产以提高热油回收项目的能效

获取原文
获取外文期刊封面目录资料

摘要

Thermal recovery technologies such as Cyclic Steam Stimulation, Steam Assisted Gravity Drainage and Steam Flood are extremely energy intensive, requiring the combustion of fossil fuels to produce the steam and resulting in emissions of carbon dioxide and other pollutants. Newer technologies such as Solvent Extraction may also require the injected medium to be heated to maximise oil recovery from the reservoir. Thermal projects often generate the heat and power required in separate facilities, with the electricity often being supplied from remote central generation facilities. In many cases it may be possible to integrate a cogeneration plant into the process. Using a single, suitably sized on-site Cogeneration facility, a locally available fuel can reliably provide both the power and heat required for the project, achieving overall energy efficiency to levels in excess of 75%, while helping to reduce the global CO2 footprint of the Oil & Gas industry and reducing reliance on imported electrical power. The design of Cogeneration plant can also help ensure maximum availability and uptime of production facilities. In most cases the heat produced by a Cogeneration plant is a by-product of electricity production, but it is also possible to utilise waste heat from some processes to produce useful energy. Waste gases from processes are also potential fuels for a Cogeneration plant, helping to reduce or eliminate gas flaring, and improve environmental performance across the whole oil production chain. There are numerous different ways to configure a Cogeneration plant depending on the type of fuel available and the ratio between power and heat required by the project. This paper will examine some of the different Cogeneration plant configurations and fuel options using Gas or Steam Turbines, or a combination of both, that could be applied to a thermal recovery project to maximise energy efficiency and plant availability.
机译:热回收技术,如循环蒸汽刺激,蒸汽辅助重力排水和蒸汽洪水是极其能量密集的,需要化石燃料的燃烧来产生蒸汽并导致二氧化碳和其他污染物的排放。诸如溶剂萃取的较新技术也可能需要加热注入的介质以使来自储存器的油回收最大化。热项目经常在单独的设施中产生热量和电力,电力通常从远程中央一代设施供应。在许多情况下,可以将热电厂集成到过程中。使用单个适当大小的现场热电联产设施,局部可用的燃料可以可靠地提供项目所需的电源和热量,实现整体能源效率,以超过75%的水平,同时有助于减少全球二氧化碳足迹石油和天然气工业及降低进口电力的依赖。热电联产工厂的设计还可以帮助确保生产设施的最大可用性和正常运行时间。在大多数情况下,通过热电联产厂产生的热量是电力生产的副产物,但也可以利用来自一些过程的废热来产生有用的能量。来自工艺的废气也是热电联产厂的潜在燃料,有助于减少或消除燃气燃烧,并改善整个石油生产链的环境性能。根据可用的燃料类型和项目所需的电力和热量之间的类型,有许多不同的方法来配置热电联产工厂。本文将使用气体或蒸汽涡轮机检查一些不同的热电联产工厂配置和燃料选择,或者两者的组合,可以应用于热回收项目,以最大化能量效率和植物可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号