首页> 外文会议>International Symposium on High Power Laser Ablation >Time-resolved study of fs laser-induced plasma in bulk a-SiO_2
【24h】

Time-resolved study of fs laser-induced plasma in bulk a-SiO_2

机译:FS激光诱导等离子体在散装A-SiO_2中的时间分辨研究

获取原文

摘要

When focusing an ultrashort laser pulse inside a transparent material, a permanent alteration of the (complex) refractive index takes place in the irradiated region. In the tight focusing regime, a precise control over the energy deposition can be achieved. Based on this principle, point by point fabrication of embedded microoptical systems has been demonstrated in the bulk of amorphous fused silica (a-SiO_2). Although the permanent laser-induced structural changes are starting to be known, the mechanisms underlying material modification are not completely understood. A widely accepted scenario of the laser-matter interaction still has to be elaborated. Specifically, the identification and the relative importance of localized and delocalized energy relaxation channels are under debate. The laser energy is coupled into the material through free carriers generated via photoionization mechanisms. Our goal is to study the energy transfer from the free carriers to the bulky material by measuring the time-resolved absorption in the interaction region. Our setup, based on an optical microscope employed in a pump-probe scheme, allows for time-resolved imaging of the interaction region with a temporal resolution about 300 fs and a spatial resolution of 650 nm. By processing ultrafast photographs of the laser generated electron-hole plasma, we are able to monitor the absorbance in-situ. We present results obtained with two illumination probe wavelengths at 400 nm and 800 nm. The time span covered ranges from the very first moments of the laser-matter interaction up to 1 ns. We observe that the absorption kinetics is not homogeneous over the irradiated volume and depends strongly on the initial distribution of laser energy. We propose a correlation of the observed absorption with the creation and decay of optically active defects.
机译:当将超短的激光脉冲聚焦在透明材料内时,在照射区域发生(复杂)折射率的永久性改变。在紧密的聚焦方案中,可以实现对能量沉积的精确控制。基于该原理,在大量非晶熔融二氧化硅(A-SiO_2)中已经证明了嵌入式微光学系统的点通过点制备。虽然永久激光诱导的结构变化开始是已知的,但是潜在材料改性的机制尚未完全理解。仍然必须阐述激光物质相互作用的广泛接受的场景。具体地,识别和局部化能量松弛通道的识别和相对重要性是在争论下的。激光能量通过通过光相化机构产生的游离载体耦合到材料中。我们的目标是通过测量相互作用区域中的时间分辨吸收来研究从自由载体的能量转移到庞大的材料。我们的设置基于泵探针方案中采用的光学显微镜允许具有时间分辨率的相互作用区域的时间分辨率约为300 fs和650nm的空间分辨率。通过处理激光产生的电子孔等离子体的超快照片,我们能够监测原位的吸光度。我们存在在400nm和800nm处用两个照明探针波长获得的结果。从激光物质相互作用的第一矩的时间跨度覆盖范围高达1 ns。我们观察到吸收动力学在照射的体积上并不均匀,并且在激光能量的初始分布上强烈取决于激光能量的初始分布。我们提出了观察到的吸收与光学活性缺陷的创作和腐烂的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号