首页> 外文会议>Symposium on Application Accelerators in High Performance Computing >A Model for Programming Data-Intensive Applications on FPGAs: A Genomics Case Study
【24h】

A Model for Programming Data-Intensive Applications on FPGAs: A Genomics Case Study

机译:在FPGA上编程数据密集型应用的模型:基因组学案例研究

获取原文

摘要

Genomics computing is indispensable in basic medical research as well as in practical applications such as disease prevention, pharmaceutical development, and criminal forensics. DNA sequencing, assembly and analysis are key components of genomics computing. Coupled with the increased use of computation for both synthesis and analysis of data in genomics is the astounding increase in the rate at which next-generation sequencing platforms are producing genomic data. Keeping up with the combination of increasing levels of algorithmic demands and an exponential increase in data represents a huge computational challenge that requires a corresponding revolution in how we process the data. Field Programmable Gate Arrays (FPGAs) are particularly well suited to the type of highly parallel, bit-level computations found in genomics algorithms. Unfortunately, the use of FPGA platforms among genomics researchers has been limited by the specialized hardware design expertise currently required to use these platforms. Another limiting factor has been a proliferation of FPGA platform architectures, each generally requiring a re-implementation of the algorithm. This paper describes a new programming model called Elan and an associated compiler that we are developing for FPGA-based genomic applications. The Elan model and compiler allow a programmer to use familiar concepts from parallel and distributed computing to develop an application at a relatively high level of abstraction, which can then be compiled automatically to large-scale FPGA platforms. One of the goals of Elan is to allow an application to be run seamlessly across both the CPU and FPGA portions of a platform, and to be parallelized easily across a system comprising many FPGAs and CPUs. We use the short read alignment application as the motivating example.
机译:基因组学计算在基本医学研究中是必不可少的,以及疾病预防,制药开发和刑事取证等实际应用。 DNA测序,组装和分析是基因组学计算的关键组成部分。再加上增加计算的计算和基因组中数据的分析是下一代测序平台产生基因组数据的速率的令人惊讶的增加。跟上算法需求水平增加的组合和数据的指数增加表示巨大的计算挑战,这需要对我们如何处理数据的相应革命。现场可编程门阵列(FPGA)特别适合于基因组学算法中发现的高度平行,比特级计算的类型。遗憾的是,基因组学研究人员之间的FPGA平台的使用受到目前需要使用这些平台所需的专业硬件设计专业知识。另一个限制因素是FPGA平台架构的增殖,每个架构通常需要重新实现算法。本文介绍了一个新的编程模型,称为ELAN和我们正在开发基于FPGA的基因组应用的关联编译器。 ELAN模型和编译器允许程序员使用并行和分布式计算来使用熟悉的概念来在相对高的抽象中开发应用程序,然后可以自动编译为大规模的FPGA平台。 ELAN的目标之一是允许应用程序在平台的CPU和FPGA部分中无缝地运行,并且在包含许多FPGA和CPU的系统中容易地轻行化。我们使用短读对准应用程序作为动机示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号