首页> 外文会议>Philadelphia, Pennsylvania Meeting >Donor-Acceptor Crystalline Supramolecular Polymers (DACS) for Solar Energy Harvesting Applications
【24h】

Donor-Acceptor Crystalline Supramolecular Polymers (DACS) for Solar Energy Harvesting Applications

机译:用于太阳能收集应用的供体 - 受体结晶超分子聚合物(DAC)

获取原文

摘要

The conversion of light into chemical energy, the programmed movement and rearrangement of cells, or the storage and translation of genetic information in nature occur because of the critical role of stimuli-responsive, structurally dynamic biopolymers that possess reversible noncovalent binding groups capable of both inter- and intrachain interactions. Supramolecular polymers that assemble from monomers into polymers as a result of noncovalent, rather than covalent, bonding have been increasingly explored for a variety of materials, but their utility in energy harvesting remains unproven. To create a new class of materials for energy harvesting applications where the molecular structure is controlled precisely in 3D as a result of well-understood self-assembly processes, a series of electron donors and electron acceptors that form supramolecular polymers upon mixing in solution have been developed. The acceptors are based on the perylene diimide (PDI) scaffolds and the donors are comprised of diketopyrrolopyrroles (DPPs) modified with terminal diamidopyridines that form complementary Hydrogen bonds (H-bonds) with the PDIs. Upon assembly, supramolecular polymers are formed that precipitate into thin films that are organized by noncovalent interactions including H-bonding, pi-pi stacking, and hydrophilic-hydrophobic contacts. The assembly of these materials in solution was studied by variable temperature (VT) 1H NMR spectroscopy, and the peak shifts indicative of H-bonding were fitted to a polymeric binding model to determine quantitatively the thermodynamic parameters of binding (ΔH~o, ΔS~o) and to confirm their temperature and concentration dependent formation into linear oligomers and polymers. Electronic and assembly properties of these materials are strongly dependent on the donor and acceptor structures, and subtle changes to the molecular structure of either have drastic consequences on binding strength and subsequent assembly.
机译:光进入化学能量,细胞的编程运动和重排,或者在性质中的遗传信息的储存和翻译,因为刺激响应性,结构动态生物聚合物的关键作用,其具有可逆的非共价结合基团,其均可互联 - 和内颈相互作用。由于非价值而不是共价,而不是共价,粘合,从单体中与聚合物组装成聚合物的超分子聚合物已经越来越多地探索了各种材料,但它们在能量收集中的效用仍未证明。为了为能量收集应用创造新的材料类材料,其中在3D中精确地控制了分子结构,这是良好的自组装方法,一系列电子给体和在溶液中混合时形成超分子聚合物的电子受体。发达。受体基于Perylene二酰亚胺(PDI)支架,并且供体由用末端二甲基吡啶改性的二酮吡咯吡咯(DPP)组成,所述末端二烷基吡啶与PDIS形成互补的氢键(H键)。在组装时,形成超分子聚合物,其形成沉淀成薄膜,其通过非共价相互作用组织,包括H键合,PI-PI堆叠和亲水 - 疏水触点。所述的组件,这些材料在溶液通过变温研究(VT)1 H NMR谱,并转移指示氢键的峰值拟合为聚合结合模型来确定定量的结合(ΔH〜○热力学参数,ΔS〜 O)并确认其温度和浓度依赖性地层成直链低聚物和聚合物。这些材料的电子和组装性能强烈依赖于供体和受体结构,并且对分子结构的微妙变化具有对结合强度和随后的组装具有巨大后果的微妙变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号