首页> 外文会议>Annual IEEE Semiconductor Thermal Measurement, Modeling and Management Symposium >Heat conduction properties of graphene: Prospects of thermal management applications
【24h】

Heat conduction properties of graphene: Prospects of thermal management applications

机译:石墨烯的热传导性能:热管理应用的前景

获取原文

摘要

As the electronic industry moves towards few-nanometer-scale CMOS and 3D IC designs thermal management becomes crucially important for achieving high performance and reliability of advanced electronic chips [1]. One approach for mitigating the self-heating problems is finding materials with very high thermal conductivity, which can be integrated with Si ICs or used as fillers in the next generation of the thermal interface materials (TIMs). In 2008, we discovered that graphene reveals extremely high intrinsic thermal conductivity, which can exceed that of bulk graphite [2–3]. To measure the thermal conductivity of an object with a thickness of just one atomic layer, we developed an original experimental technique and applied it to graphene flake suspended across trenches in Si wafers. In this technique, the micro-Raman spectrometer performed the function of a thermometer measuring the local temperature rise from the shift in the spectral position of the Raman G peak. We explained the fact that the intrinsic thermal conductivity of graphene can be larger than that of graphite by the fundamental difference in the low-energy phonon transport in 2D graphene and 3D graphite [4–6]. The extremely high thermal conductivity of “free” suspended graphene does not mean that it will be automatically preserved when graphene is incorporated inside semiconductor chips or composite TIMs. Thermal conductivity of graphene layers depends strongly on their geometrical size, coupling to the adjacent substrate or capping layers, edges roughness and defect concentration. I will overview the experimental and theoretical results for the thermal conductivity evolution of the few-layer graphene (FLG) considering two limiting cases of the phonon transport limited by the intrinsic and extrinsic effects. The use of graphene as interconnects and heat spreaders in advanced 2D and 3D computer chips will also be discussed. The last section of the talk will have a descr- - iption of the data for graphene TIM materials. We found that thermal conductivity of several types of epoxy TIMs can be significantly increased by an addition of the chemically derived graphene even at very small graphene's loading fractions. The increase in the effective thermal conductivity of graphene TIMs is much stronger than that for conventional filler materials [7]. A general outlook at the prospects of graphene electronics will conclude the talk.
机译:由于电子工业朝向几纳米的CMOS和3D IC设计移动,热管理对于实现高级电子芯片的高性能和可靠性,热管理是至关重要的[1]。一种用于减轻自我加热问题的一种方法正在寻找具有非常高的导热性的材料,其可以与Si Ics集成,或者用作下一代热界面材料(TIMS)中的填充物。 2008年,我们发现石墨烯揭示了极高的内在导热率,这可能超过散装石墨[2-3]。为了测量具有仅一个原子层的厚度的物体的导热率,我们开发了一种原始的实验技术,并将其应用于Si晶片中悬浮在沟槽上的石墨烯片。在该技术中,微拉曼光谱仪执行了测量从拉曼G峰的光谱位置的偏移量测量局部温度升高的功能。我们解释了石墨烯的固有导热系数可以大于2D石墨烯和3D石墨中的低能量声子传输的基本差异的石墨的基本差异[4-6]。 “自由”悬浮石墨烯的极高导热率并不意味着当石墨烯结合在半导体芯片或复合秒内时,它将自动保留。石墨烯层的导热率在其几何尺寸上强烈取决于它们的几何尺寸,与相邻的基板或封盖层,边缘粗糙度和缺陷浓度耦合。我将概述考虑到由内在和外本效应有限的声子输送的两个限制性病例的几层石墨烯(FLG)的热导率进化的实验和理论结果。还将讨论使用石墨烯作为高级2D和3D计算机芯片中的互连和散热器。谈话的最后一部分将具有石墨烯蒂米材料数据的描述。我们发现,即使在非常小的石墨烯的装载级分中,通过添加化学衍生的石墨烯,可以显着增加几种类型的环氧偶数的导热率。石墨烯TIM的有效导热率的增加远比常规填料材料的强度强大[7]。石墨烯电子产品前景的一般展望将缔结谈判。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号