首页> 外文会议>International congress on engineering and food >Developing next generation predictive models: a systems biology approach
【24h】

Developing next generation predictive models: a systems biology approach

机译:开发下一代预测模型:系统生物学方法

获取原文

摘要

In the area of predictive microbiology, most models focus on simplicity and general applicability, and can be classified as black box models with the main emphasis on the description of the macroscopic (population level) microbial behavior as a response to the environment. Their validity to describe pure cultures in simple, liquid media under moderate environmental conditions is widely illustrated and accepted. However, experiments have shown that extrapolation to more complex (realistic) systems is not allowed as such. In general, the applicability and reliability of existing models under more realistic conditions can definitely be improved by unraveling the underlying mechanisms and incorporating intracellular (microscopic) information. Following a systems biology approach, the link between the intracellular fluxes and the extracellular measurements is established by techniques of metabolic flux analysis. Flux balance analysis (FBA) uses an objective function to derive, through optimization over the solution space of this underdetermined linear system, an intracellular flux distribution. A first section of this paper discusses the background of the FBA approach. The modeling approach presented in this paper can lead in the future to more accurate predictive models for more complex systems, such as co-cultures and growth as colonies, based on a top-down systems biology approach. A second section focuses on an important issue with respect to the implementation of FBA analysis when modeling dynamics systems. To be able to use flux predictions by FBA in a dynamic model, all degrees of freedom of the underdetermined linear system need to be removed. In most cases, not all degrees of freedom can be fixed through optimization and multiple flux solutions are found. Extra information is required to identify the remaining degrees of freedom. A study on the minimum number of constraints (measurements) needed to remove all degrees of freedom is determined for a small-scale metabolic reaction network constructed for E. coli K12.
机译:在预测微生物学领域,大多数模型都专注于简单和一般适用性,并且可以被分类为黑匣子型号,主要重点是对宏观(人口水平)微生物行为的描述作为对环境的响应。他们在适度的环境条件下简单地描述纯培养物的纯培养的有效性被广泛地说明和接受。然而,实验表明,不允许外推到更复杂(现实)系统。通常,通过解开潜在机制并掺入细胞内(微观)信息,肯定可以改善现有模型的适用性和可靠性。在系统生物学方法之后,通过代谢通量分析的技术建立细胞内助熔剂和细胞外测量之间的联系。通量平衡分析(FBA)通过优化该未确定的线性系统的溶液空间,使细胞内助焊剂分布进行目标函数。本文的第一部分讨论了FBA方法的背景。本文呈现的建模方法可以在未来导致更准确的预测模型,以获得更复杂的系统,例如基于自上而下的系统生物学方法,例如殖民地的共同文化和生长。第二部分侧重于在建模动态系统时执行FBA分析的一个重要问题。为了能够在动态模型中使用FBA的助焊剂预测,需要去除未确定的线性系统的所有程度的自由度。在大多数情况下,并非所有的自由度都可以通过优化来固定,并且发现多个助焊剂解决方案。需要额外的信息来识别剩余的自由度。确定用于去除所有自由度所需的最小约束数(测量)的研究,用于针对大肠杆菌K12构建的小规模代谢反应网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号