【24h】

The dynamics of histotripsy bubbles

机译:组织纤维泡沫的动态

获取原文

摘要

Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as 'boiling' versus 'cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 deg C ('boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.
机译:组织纤维膏描述了使用高幅度声脉冲来激发气泡和侵蚀组织的处理。虽然组织侵蚀可以直接归因于泡沫活性,但是气泡的成因和动态仍不清楚。没有产生两种不同的声学协议的绝大凝固损坏迹象的组织脆性病变:在毫秒内产生局部沸腾的相对长的声脉冲,并且相对短的脉冲幅度较高,但可能不会产生沸腾。虽然这两种方法通常被视为“沸腾”而不是“空化”,但这种标签可以模糊相似之处。在这两种情况下,气泡经历半径的大变化,并且在振荡时输送到气泡中并从气泡中输送。此外,两种方法的观察表明气泡增长到它们停止剧烈崩溃的尺寸。为了更好地理解组蛋白折叠气泡的动态,已经开发了一种单泡模型,其将声学激发的气泡运动耦合到周围液体的热力学状态。使用该模型用于暴露于组织特阶声道的气泡,模拟表明,两种机制可以单独行动或协同作用,以导致通常观察到的泡沫生长。首先,非线性声学传播导致冲击的演变和驱动泡沫运动的正极压力中的响应和不对称性。该不对称性可以对气泡振荡的整流效果,其中气泡在每个声循环期间平均增长。其次,蒸汽输送到/来自气泡倾向于产生更大的气泡,特别是在升高的温度下。当环境温度超过100℃('沸腾')或气泡附近的局部加热导致超热边界层时,气相运输可以导致整流气泡生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号