首页> 外文会议>International Conference on Fuzzy Computation >AN EFFICIENT IMPLEMENTATION OF A REALISTIC SPIKING NEURON MODEL ON AN FPGA
【24h】

AN EFFICIENT IMPLEMENTATION OF A REALISTIC SPIKING NEURON MODEL ON AN FPGA

机译:在FPGA上有效地实现了一个现实尖刺神经元模型

获取原文

摘要

Hardware implementations of spiking neuron models have been studied over the years mainly in researches focused on bio-inspired systems and computational neuroscience. This introduced considerable challenges for researchers particularly in terms of the requirements to realise a efficient embedded solution which may provide artificial devices adaptability and performance in real-time environment. Thus, programmable hardware was widely used as a model for the adaptable requirements of neural networks. From this perspective, this paper describes an efficient implementation of a realistic spiking neuron model on a Field Programmable Gate Array (FPGA). A network consisting of 10 Izhikevich's neurons was produced, in a low-cost and low-density FPGA. It operates 100 times faster than in real time, and the perspectives of these results in newer models of FPGAs are promising.
机译:多年来,多年来研究了尖峰神经元模型的硬件实现,主要是在研究生物启发系统和计算神经科学的研究中。这对研究人员来说,这对研究人员来说尤其引入了相当大的挑战,以实现有效的嵌入式解决方案,这可以在实时环境中提供人工装置适应性和性能。因此,可编程硬件被广泛用作神经网络适应性要求的模型。从这个角度来看,本文描述了在现场可编程门阵列(FPGA)上的现实尖峰神经元模型的有效实现。以低成本和低密度的FPGA生产由10个Izhikevich的神经元组成的网络。它比实时运行100倍,并且这些结果在FPGA的新模型中是有前途的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号