首页> 外文会议>Materials Research Society Meeting >Structural Evolution of AuPt and AuPd Nanoparticles Fabricated by Microwave Assisted Synthesis: A Comparative Study
【24h】

Structural Evolution of AuPt and AuPd Nanoparticles Fabricated by Microwave Assisted Synthesis: A Comparative Study

机译:微波辅助合成制备的中断和AUPD纳米粒子的结构演变:比较研究

获取原文

摘要

Bimetallic nanoparticles (NPs), particularly Au/Pd and Au/Pt, have attracted extensive attention due to their wide-spread application in catalysis, optoelectronics and energy recuperation.[1] Here we have attempted the fabrication of Au/Pt and Au/Pd bimetallic NPs by an energy-efficient eco-friendly microwave methodology. The microwave-assisted reactions enable considerably large product yields over conventional colloidal methods due to (a) almost two-fold increased reaction kinetics, (b) localized superheating at reaction sites and rapid rise of initial temperature. [2] Au NPs (sizes 20 ± 3 nm) are fabricated in the first step followed by the reduction of [PdCl_2(NH_3)_2] or [K_2PtCl_6]in tetraethylene glycol at 180°C for 2 min. Controlling and understanding the atomic structure and elemental distributions of these NPs are crucial for their optimized performances. So, we address the fundamental question of the most likely arrangement of Au and Pd or Pt atoms in these bimetallic NPs prepared under similar conditions by complementary characterizations using UV-Vis spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The UV-Vis spectroscopy reveals the formation of an alloy shell. The extent of depression of the plasmon peak of Au and its blue-shift reveals substantial deposition of Pd atoms on an Au core and significant alloying in comparison to Au/Pt NPs. XRD reveals the gradual shift of the diffraction peak from the position of Au to the position of Pd or Pt with change in composition. XRD supports the formation of a thick alloy shell in these NPs. However, the TEM images reveal a very interesting result. With increase in Pt concentration, the size of the dispersed NPs decreases from 20 ± 3 nm to about 16 nm (±1 nm) and there is evolution of a bimodal particle size distribution with small particles about 1-2 nm diameters. On the contrary, with increasing Pd concentration, the particle size of the dispersed particles increases to about 32 nm (± 1 nm). This discrepancy of particle size evolution for the two systems arises due to the differences in surface energies (Pt > Pd > Au atoms). Pt atoms tend to diffuse towards the core with the formation of Au nano-islands which eventually segregates leading to a reduction in particle size and bimodal distribution. At higher concentration of Pt, Pt and Au atoms tend to nucleate separately also contribute to the bimodal distribution. While for Au/Pd NPs, we have an Au core with an alloyed shell having higher Pd concentration. This is further supported by experimental evidence by selective etching and dissolution of Au by potassium-iodide solution. Furthermore, the Au/Pd bimetallic NPs are found to possess better catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol than Au/Pt and monometallic NPs.
机译:双金属纳米粒子(NPS),特别是Au / Pd和Au / Pt,由于它们在催化,光电子和能量恢复中的广泛应用而引起了广泛的关注。[1]在这里,我们尝试通过节能的环保微波方法制造AU / PT和AU / PD双金属NPS。微波辅助反应由于(a)在反应部位下的几乎两倍增加的反应动力学,(b)在反应位点处的局部超热和初始温度的快速升高,使得常规胶体方法具有相当大的产品产生的大量产品。 [2] Au nps(尺寸20±3nm)在第一步中制造,然后在180℃下在十六乙二醇中减少[Pdcl_2(NH_3)_2]或[K_2PTCl_6],持续2分钟。控制和理解这些NPS的原子结构和元素分布对于它们的优化性能至关重要。因此,通过使用UV-VIS光谱,X射线衍射(XRD)和透射电子显微镜(TEM),通过互补特征来解决在类似条件下制备的这些双金属NPS中最可能的AU和PD或PT原子排列的基本问题。 UV-Vis光谱揭示了合金壳的形成。 Au等抑郁症的程度及其蓝移揭示了Pd原子对Au核的显着沉积和与Au / pt nps相比的显着合金化。 XRD揭示了衍射峰的逐渐移位从Au的位置到Pd或Pt的位置随着组合物的变化。 XRD支持在这些NPS中形成厚合金壳。但是,TEM图像揭示了一个非常有趣的结果。随着Pt浓度的增加,分散的NP的尺寸从20±3nm降低至约16nm(±1nm),并且具有约1-2nm直径的小颗粒的双峰粒度分布的演变。相反,随着Pd浓度的增加,分散颗粒的粒度增加至约32nm(±1nm)。由于表面能量(PT> Pd> Au原子)的差异,这两个系统的粒度演化的这种差异差异出现。 Pt原子倾向于朝核心弥散,形成Au纳米岛,其最终偏析导致粒度和双峰分布的降低。在较高浓度的Pt,Pt和Au原子倾向于核心也有助于双峰分布。而对于Au / Pd NPS,我们具有一个具有较高PD浓度的合金壳的Au芯。通过通过碘化钾溶液选择性蚀刻和溶解Au的实验证据进一步支持这一点。此外,发现Au / Pd双金属NPS在减少4-硝基苯酚至4-氨基苯酚上具有比Au / Pt和单金属NPS更好的催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号