首页> 外文会议>SPIE Conference on High and Low Concentrator Systems for Solar Electric Applications >Photocurrent enhancement in plasmonic solar cells attached to luminescent solar concentrators
【24h】

Photocurrent enhancement in plasmonic solar cells attached to luminescent solar concentrators

机译:发光太阳能集中器附着的等离子体太阳能电池的光电流增强

获取原文

摘要

Luminescent solar concentrators (LSCs) generally consist of transparent polymer sheets doped with luminescent species. Incident sunlight is absorbed by the luminescent species and emitted with high quantum efficiency, so that the emitted light is trapped in the sheets and travels to the edges where it can be collected by solar cells. Unlike regular solar spectrum, the emission spectrum of LSCs based on Lumogen Red dye red shifts and concentrates to a small range of wavelengths (600nm to 700nm). Therefore, hydrogenated amorphous silicon (a-Si:H), whose bandgap is around 750nm, can absorb the emission light without many thermalization losses. Due to the low diffusion lengths in a-Si:H, thin absorbing layer should be applied, causing insufficient light absorbance. In this letter, we propose a structure that coupling nanostructured plasmonic back contact to LSC solar cell. After optimization, numerical results show that the photocurrent intensity increases by a factor of 1.30 compared with LSC solar cells with randomly textured back contacts. In contrast, when illuminated by one Sun, the photocurrent for textured cell compares to that for nanostructured cell. The remarkable photocurrent enhancement in LSC cells is attributed to two main reasons. First, the wavelengths, where nanostructured cell shows higher absorbance compared with textured one, are identical with the emission peak of LSC. Second, the light interferences constructed in flat cells, which cause the absorbance curve to red shift and match with the emission spectrum, are depressed in textured cell, but are maintained in nanostructured cell. The second reason is described in detail.
机译:发光太阳能聚光器(LSCs)通常由掺杂有发光物种的透明聚合物片组成。入射的阳光被发光物种吸收并以高量子效率发射,使得发射的光被捕获在片材中并行进到可通过太阳能电池收集的边缘。与常规的太阳光谱不同,基于岩石红染料的LSCS的发射光谱偏移并集中到小范围的波长(600nm至700nm)。因此,氢化非晶硅(A-Si:H),其带隙约为750nm,可以在没有许多热化损失的情况下吸收发射光。由于A-Si:H中的低扩散长度,应施加薄的吸收层,引起光吸收不足。在这封信中,我们提出了一种结构,即将纳米结构等离子体背面接触到LSC太阳能电池的结构。优化后,数值结果表明,与随机纹理的背触头的LSC太阳能电池相比,光电流强度增加了1.30倍。相反,当被一个太阳照射时,纹理细胞的光电流与纳米结构细胞的光电流进行比较。 LSC细胞中显着的光电流增强归因于两种主要原因。首先,与纹理1相比,纳米结构细胞显示纳米结构细胞的波长与LSC的发射峰相同。其次,在纹理细胞中抑制了在扁平细胞中构建的扁平电池中的光干扰,这在纹理细胞中抑制了纳米结构细胞。第二个原因详细描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号