...
首页> 外文期刊>Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion >Broadband plasmonic coupling and enhanced power conversion efficiency in luminescent solar concentrator
【24h】

Broadband plasmonic coupling and enhanced power conversion efficiency in luminescent solar concentrator

机译:发光太阳能集中器中宽带等离子体耦合和增强功率转换效率

获取原文
获取原文并翻译 | 示例

摘要

Advancements in solar energy harvesting technologies call for innovative approaches to meet the ever-growing energy demand. This study exploits the plasmonic interaction of metal nanoparticles (MNPs) with fluorophores to improve the optical performance of Luminescent Solar Concentrators (LSCs). Plasmonic Luminescent Solar Concentrator (PLSC) with dimensions of 45 x 45 x 3 mm(3) containing Lumogen Red305 dye and gold core silver shell nanocuboids (Au@Ag NCs) were fabricated and characterized. Plasmonic coupling in the PLSC device was influenced through spacing and spectral overlap between the nanocuboids (NCs) and Red305 dye. The spacing between Au@Ag NCs and Red305 dye was controlled by the doping concentration of Au@Ag NCs for acquiring a homogeneous sample. The optical performance of PLSC waveguides was investigated through edge emission measurements of the waveguides while varying the doping concentration of Au@Ag NCs. A maximum enhancement of 30% in the fluorescence was achieved for PLSC device containing an optimal doping concentration (1.1 ppm) of Au@Ag NCs. A transition from maximum fluorescence enhancement to quenching was demonstrated, emphasizing the importance of MNP doping concentration and spectral overlap when coupling Au@Ag NC and Red305 dye molecules. At high doping concentrations of Au@Ag NCs, non-radiative energy transfer from Red305 dye molecules to the Au@Ag NCs made quenching a dominant effect. Monocrystalline silicon solar cells were attached to one edge of the PLSC waveguides. For the sample with 1.1 ppm Au@Ag NCs doping concentration, the power conversion efficiency was found to be 1.2 times higher than the power conversion efficiency of 0 ppm sample.
机译:太阳能收集技术的进步呼吁创新方法以满足不断增长的能源需求。该研究利用金属纳米颗粒(MNP)与荧光团的等离子体相互作用来改善发光太阳能浓缩器(LSCs)的光学性能。尺寸为45×45×3mm(3)的等离子体发光太阳能聚光器(PLSC)制造含有型储藏型Red305染料和金芯银壳纳米素(Au @ Ag NCs)的尺寸。通过纳米骨膜(NCS)和RED305染料之间的间隔和光谱重叠来影响PLSC装置中的等离子体耦合。通过Au @ Ag NCS的掺杂浓度来控制Au @ Ag NCs和Red305染料之间的间距来获取均匀样品。通过波导的边缘发射测量来研究PLSC波导的光学性能,同时改变Au @ Ag ncs的掺杂浓度。对于含有Au @ Ag NCs的最佳掺杂浓度(1.1ppm)的PLSC器件,实现了荧光中30%的最大增强。证明了从最大荧光增强到淬火的过渡,强调MnP掺杂浓度和光谱重叠在偶联Au @ Ag Nc和Red305染料分子时的重要性。在高掺杂浓度的Au @ Ag ncs的浓度下,从Red305染料分子到Au @ Ag ncs的非辐射能量转移使得淬火效果。单晶硅太阳能电池连接到PLSC波导的一个边缘。对于具有1.1 ppm Au @ Ag ncs掺杂浓度的样品,发现功率转换效率比0ppm样本的功率转换效率高1.2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号