首页> 外文会议>International Conference Multiscale Materials Modeling >Sub Grain Formation in Plastically Deformed Microstructures in the Combined Simulation of Rolling and Annealing for Static Recrystallization with the Phase-Field Method
【24h】

Sub Grain Formation in Plastically Deformed Microstructures in the Combined Simulation of Rolling and Annealing for Static Recrystallization with the Phase-Field Method

机译:塑性变形微观结构中的亚颗粒形成在轧制和退火的组合模拟中,用相场法测定静电再结晶

获取原文
获取外文期刊封面目录资料

摘要

The microstructure and the mechanical properties of cold rolled metal sheets after annealing strongly depend on the prior deformation step and the recrystallization process. To obtain a recrystallized microstructure after annealing, we simulate the recrystallization and sub grain formation process for plastically deformed microstructures, considering crystallographic orientations and deformation with the phase-field method. The first step is the conversion of the simulation data for a rolling process which is calculated with the finite element method (FEM) on an irregular grid. These data are subsequently projected on a regular grid to simulate the static recrystallization with the phase-field method. Before the misorientation between discretisation points can be used to generate sub grains, the data of the FE simulation must be transferred in an appropriate manner on the regular grid. Voronoi tessellation is a common technique, which is used to map irregular grid points on a regular grid, e.g. in simulation of recrystallization processes with cellular automata [1]. The accumulated plastic slip of the crystal plasticity FE simulation is considered as a measure of the plastic deformation for the recrystallization and is included in the mapping process. Nucleation of sub grains is modeled depending on the deformation of the grain structure and the misorientation of the grain boundary. An additional driving force for the growth of the nuclei during recrystallization is incorporated in the phase-field model [2] by using the accumulated plastic slip (stored energy) as an additional system variable.
机译:冷轧金属板在退火后的微观结构和机械性能强烈取决于先前的变形步骤和再结晶过程。为了在退火后获得重结晶微观结构,我们模拟了塑性变形微结构的重结晶和亚粒形成过程,考虑了结晶取向和与相场法的变形。第一步是用于滚动过程的模拟数据的转换,该滚动过程用不规则网格上的有限元方法(FEM)计算。随后将这些数据投影在常规网格上,以模拟具有相位场方法的静态再结晶。在可以使用离散点之间的错误化来生成子谷物之前,必须在常规网格上以适当的方式传输FE模拟的数据。 Voronoi Tessellation是一种常用技术,用于在常规网格上映射不规则的网格点,例如,用蜂窝自动机的再结晶过程模拟[1]。晶体塑性Fe模拟的累积塑料滑移被认为是重结晶的塑性变形的量度,并包括在映射过程中。根据晶粒结构的变形和晶界的错误化,模拟亚颗粒的成核。通过使用累积的塑料滑动(存储的能量)作为附加系统变量,在基相模型[2]中掺入了在基相模型[2]中的额外驱动力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号