首页> 外文会议>International Conference of Quantum Bio-Informatics >FUNCTIONAL MECHANICS AND TIME IRREVERSIBILITY PROBLEM
【24h】

FUNCTIONAL MECHANICS AND TIME IRREVERSIBILITY PROBLEM

机译:功能力学和时间不可逆转问题

获取原文

摘要

The time irreversibility problem is the problem of how to explain that there is the reversible microscopic dynamics and the irreversible macroscopic physics. In this paper an attempt is performed of the following solution of the irreversibility problem: a formulation of microscopic dynamics is suggested which is irreversible in time. In this way the contradiction between the reversibility of microscopic dynamics and irreversibility of macroscopic dynamics is avoided since both dynamics in the proposed approach are irreversible. A widely used notion of microscopic state of the system at a given moment of time as a point in the phase space does not have an immediate physical meaning since arbitrary real numbers are non observable. In the approach presented in this paper the physical meaning is attributed not to an individual trajectory but only to a bunch of trajectories or to the distribution function on the phase space. The fundamental equation of the microscopic dynamics in the proposed "functional" approach is not the Newton equation but the Liouville equation for the distribution function of the single particle. Solutions of the Liouville equation have the property of delocalization which accounts for irreversibility. It is shown that the Newton equation in this approach appears as an approximate equation describing the dynamics of the average values of the position and momenta for not too long time intervals. Corrections to the Newton trajectories are computed. Possible applications to the information and molecular dynamics are mentioned.
机译:不可逆转的问题是如何解释有可逆的微观动态和不可逆的宏观物理学的问题。在本文中,对不可逆问题的解决方案进行了尝试:提出了微观动力学的制剂,其在时间不可逆转。以这种方式,由于所提出的方法中的两个动态都是不可逆转的,因此避免了宏观动力学的可逆性与宏观动力学的不可逆性之间的矛盾是不可逆转的。在给定时刻,作为相位空间中的点的一个广泛使用的系统的微观状态的概念不具有即时物理含义,因为任意实数是非可观察的。在本文中呈现的方法中,物理含义归因于单个轨迹,而是仅归因于一束轨迹或相位空间上的分发功能。所提出的“功能”方法中的微观动力学的基本方程不是牛顿方程,而是单粒子的分布函数的Liouville方程。 Liouville方程的解决方案具有临近性的属性,其占不可逆转性。结果表明,该方法中的牛顿方程看起来是描述位置和动量的平均值的动态的近似方程,而不是太长的时间间隔。计算对牛顿轨迹的校正。提到了信息和分子动力学的可能应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号